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2.5D matrix multiplication
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2.5D MM on 16,384 nodes of BG/P
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2.5D LU factorization

2. Perform TRSMs to compute 
a panel of L and a panel of U.

1. Factorize A₀₀ 
redundantly on each layer.
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3. Broadcast blocks so all
layers own the panels
of L and U.
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4.Broadcast different
subpanels within each
layer.

5.Multiply subpanels
on each layer.

6.Reduce (sum) the
next panels.*

U

L

7. Broadcast the panels and 
continue factorizing the Schur's 
complement...

* All layers always need to contribute to reduction
even if iteration done with subset of layers.
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2.5D LU without pivoting on 16,384 nodes of BG/P
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2.5D LU with pivoting
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3. Pivot rows in first big block column 
on each layer.

2. Reduce to find best pivot rows.
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8. Perform TRSMs
 to compute panel of U

L₃₀

L₁₀
L₂₀

1. Factorize each block
in the first column with pivoting.

4. Apply TRSMs to
compute first column of L
and the first block of a row of U.

5. Update corresponding
interior blocks S=A-L   *U₀₁. 

6. Recurse to compute the rest
of the first big block column of L.

9. Update the rest
of the matrix as 
before and recurse 
on next block panel...

7. Pivot rows in the rest
of the matrix on each 
layer.
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2.5D LU with CA-pivoting on BG/P (n=65,536)
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2.5D LU with CA-pivoting on 16,384 nodes of BG/P
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Reduced communication complexity
2.5D algorithms replicate matrices to reduce communication.

• Memory usage: ↑ O(c)

• Words communicated: ↓ O(
√
c)

• Messages sent: ↓ O(c3/2) for MM and ↑ O(
√
c) for LU

All communication costs are theoretically optimal according to lower
bounds. 2D algorithms (standard in ScaLAPACK) are generalized by
2.5D algorithms (c = 1).

Network topology awareness
Replication of matrices adds a third dimension to the logical proces-
sor grid. 2.5D algorithms parameterize this layout according to phys-
ical network topology.

• Network contention reduced or eliminated

• Multicasts and reductions performed along torus edges

• More network bandwidth saturated

These mappings are suitable for torus network topologies. Recursive
layouts are probably better for tree or switched network topologies.

Future directions
Algorithmic challenges:

• Nested 2D/2.5D MM tensor contraction algorithms

• Resolution of dependency challenges in 2.5D Householder QR

• Better theoretical models for network topologies

Technical challenges:

• Efficient abstraction of distributed matrix layouts

• Automation of topology mapping and algorithm synthesis
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