
Algorithms as Multilinear Tensor Equations

Edgar Solomonik

Department of Computer Science
ETH Zurich

California Institute of Technology

February 29, 2016

Edgar Solomonik Algorithms as Multilinear Tensor Equations 1/32

Pervasive paradigms in scientific computing

What commonalities exist in simulation and data analysis applications?

multidimensional datasets (observations, discretizations)

higher-order relations: equations, maps, graphs, hypergraphs

sparsity and symmetry in structure of relations

relations lead to solution directly or as an iterative criterion

algebraic descriptions of datasets and relations

Edgar Solomonik Algorithms as Multilinear Tensor Equations 2/32

Pervasive paradigms in scientific computing

What abstractions are needed in high performance computing?

data abstractions reflecting native dimensionality and structure

functions orchestrating communication and synchronization

provably efficient building-block algorithms

Edgar Solomonik Algorithms as Multilinear Tensor Equations 3/32

Matrix computations ⊂ tensor computations

Tensors are convenient abstractions for multidimensional data

one type of object for any homogeneous dataset

enable expression of symmetries

reveal sparsity structure of relations in multidimensional space

Tensor computations naturally extend numerical linear algebra

= often reduce to or employ matrix algorithms

can leverage high performance matrix libraries

+ high-order tensors can ‘act’ as many matrix unfoldings

+ symmetries lower memory footprint and cost

+ tensor factorizations (CP, Tucker, tensor train, ...)

Edgar Solomonik Algorithms as Multilinear Tensor Equations 4/32

Applications of high-order tensor representations

Numerical solution to differential equations

higher-order Taylor series expansion terms

nonlinear terms and differential operators

Computer vision and graphics

2D image ⊗ angle ⊗ time

compression (tensor factorizations, sparsity)

Machine learning

sparse multi-feature discrete datasets

reduced-order models (tensor factorizations)

Graph computations

hypergraphs, time-dependent graphs

clustering/partitioning/path-finding (eigenvector computations)

Divide-and-conquer algorithms representable by tensor folding

bitonic sort, FFT, scans

Edgar Solomonik Algorithms as Multilinear Tensor Equations 5/32

Applications to quantum systems

Manybody Schrödinger equation

“curse of dimensionality” – exponential state space

Condensed matter physics

tensor network models (e.g. DMRG), tensor per lattice site

highly symmetric multilinear tensor representation

exponential state space localized → factorized tensor form

Quantum chemistry (electronic structure calculations)

models of molecular structure and chemical reactions

methods for calculating electronic correlation:

“Post Hartree-Fock”: configuration interaction, coupled cluster,
Møller-Plesset perturbation theory

multi-electron states as tensors,
e.g. electron ⊗ electron ⊗ orbital ⊗ orbital

nonlinear equations of partially (anti)symmetric tensors

interactions diminish with distance → sparsity, low rank
Edgar Solomonik Algorithms as Multilinear Tensor Equations 6/32

Outline and highlights

1 Symmetry-preserving tensor algorithms

contraction of order 2s symmetric tensors in (3s)!
(s!)3 fewer multiplies

up to 9X speed-up for partially-symmetric contractions in coupled cluster

2 Communication-avoiding parallel algorithms
novel tradeoffs: synchronization vs communication in Cholesky and stencils
algorithms with p1/6 less communication on p processors for LU, QR, eigs
topology-aware implementations: 12X speed-up for MM, 2X for LU

3 Cyclops Tensor Framework (CTF)
first distributed-memory tensor framework supporting arbitrary contractions
symmetry, sparsity, multitype functions, redistributions, high-level language

4 Applications to electronic structure calculations
codes using CTF for wavefunction methods: Aquarius, QChem, VASP, Psi4
coupled cluster faster than NWChem by > 10X, nearly 1 petaflop/s

Edgar Solomonik Algorithms as Multilinear Tensor Equations 7/32

Exploiting symmetry in tensors

Tensor symmetry (e.g. Aij = Aji) reduces memory and cost

for order d tensor, d! less memory

dot product
∑

i ,j AijBij = 2
∑

i<j AijBij +
∑

i AiiBii

matrix-vector multiplication1

ci =
∑
j

Aijbj =
∑
j

Aij(bi + bj)−
(∑

j

Aij

)
bi

rank-2 vector outer product1

Cij = aibj + ajbi = (ai + aj)(bi + bj)− aibi − ajbj

squaring a symmetric matrix (or AB + BA)1

Cij =
∑
k

AikAkj =
∑
k

(Aik + Akj + Aij)
2 − . . .

for order ω contraction, ω! fewer multiplies 1

1
S., Demmel; Technical Report, ETH Zurich, 2015.

Edgar Solomonik Algorithms as Multilinear Tensor Equations 8/32

Symmetry preserving algorithms

By exploiting symmetry, reduce multiplies (but increase adds)2

partially symmetric contractions

symmetry preserving algorithm can be nested over each index group
reduction in multiplies → reduction in cost, e.g. for Akm

ij = Akm
ji

ckli =
∑
j,m

Akm
ij bml

j =
∑
j

(∑
m

Akm
ij (bml

i + bml
j)

)
−
∑
m

(∑
j

Akm
ij

)
bml
i

cost reductions in coupled cluster:
2X-9X for select contractions, 1.3X-2.1X for methods

algorithms generalize to most antisymmetric tensor contractions

for Hermitian tensors, multiplies cost 3X more than adds

Hermitian matrix multiplication and tridiagonal reduction (BLAS and
LAPACK routines) with 25% fewer ops

(2/3)n3 bilinear rank for squaring a nonsymmetric matrix

decompose symmetric contractions into smaller symmetric contractions
2

S., Demmel; Technical Report, ETH Zurich, 2015.

Edgar Solomonik Algorithms as Multilinear Tensor Equations 9/32

Beyond computation cost

Algorithms should minimize communication, not just computation

data movement and synchronization cost more energy than flops

two types of data movement:

vertical (intranode memory–cache)
horizontal (internode network transfers)

parallel algorithm design involves tradeoffs: computation vs
communication vs synchronization

lower bounds and parameterized algorithms provide optimal solutions
within a well-defined tuning space

Edgar Solomonik Algorithms as Multilinear Tensor Equations 10/32

Cost model for parallel algorithms

Given a schedule of work and communication tasks on p processors,
consider the following costs, accumulated along chains of tasks (as in
α− β, BSP, and LogGP models),

F – computation cost

Q – vertical communication cost

W – horizontal communication cost

S – synchronization cost

Edgar Solomonik Algorithms as Multilinear Tensor Equations 11/32

Communication lower bounds: previous work

Multiplication of n × n matrices

horizontal communication lower bound3

WMM = Ω

(
n2

p2/3

)
memory-dependent horizontal communication lower bound4

WMM = Ω

(
n3

p
√
M

)
with M = cn2/p memory, hope to obtain communication cost

W = O(n2/
√
cp)

libraries like ScaLAPACK, Elemental optimal only for c = 1

3
Aggarwal, Chandra, Snir, TCS, 1990

4
Irony, Toledo, Tiskin, JPDC, 2004

Edgar Solomonik Algorithms as Multilinear Tensor Equations 12/32

Communication-efficient matrix multiplication

Communication-avoiding algorithms for matrix multiplication have been
studied extensively5

They continue to be attractive on modern architectures6

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D SUMMA
2D SUMMA

ScaLAPACK PDGEMM

 0

 50

 100

 150

 200

256 512 1024 2048 4096
G

ig
af

lo
p/

s/
no

de

#nodes

Matrix multiplication strong scaling on Mira (BG/Q)

2.5D MM n=65,536
2D MM n=65,536

2.5D MM n=16,384
2D MM n=16,384

12X speed-up, 95% reduction in comm. for n = 8K on 16K nodes of BG/P

5
Berntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar, IBM, 1995;

McColl, Tiskin, Algorithmica, 1999; ...
6

S., Bhatele, Demmel, SC, 2011

Edgar Solomonik Algorithms as Multilinear Tensor Equations 13/32

Synchronization cost lower bounds

Unlike matrix multiplication, many algorithms in numerical linear algebra
have polynomial depth (contain a long dependency path)

matrix multiplication synchronization cost bound7

SMM = Θ

(
n3

pM3/2

)
algorithms for Cholesky, LU, QR, SVD do not attain this bound

low granularity computation increases synchronization cost

7
Ballard, Demmel, Holtz, Schwartz, SIAM JMAA, 2011

Edgar Solomonik Algorithms as Multilinear Tensor Equations 14/32

Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the n × n diamond DAG,8

F · S = Ω(n2)

We generalize this idea9

additionally consider horizontal communication

allow arbitrary (polynomial or exponential) interval expansion

8
Papadimitriou, Ullman, SIAM JC, 1987

9
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Edgar Solomonik Algorithms as Multilinear Tensor Equations 15/32

Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms,
represented via dependency hypergraphs:a

For triangular solve with an n × n matrix,

FTRSV · STRSV = Ω
(
n2
)

For Cholesky of an n × n matrix,

FCHOL · S2
CHOL = Ω

(
n3
)

WCHOL · SCHOL = Ω
(
n2
)

Proof employs classical Loomis-Whitney inequality:

for any R ⊂ N× N× N, three projections of R onto N× N have total size
at least |R|2/3

a
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Edgar Solomonik Algorithms as Multilinear Tensor Equations 16/32

Communication-efficient LU factorization

For any c ∈ [1, p1/3], use cn2/p memory per processor and obtain

WLU = O(n2/
√
cp), SLU = O(

√
cp)

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

LU with tournament pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU
ScaLAPACK PDGETRF

LU with pairwise pivoting10 extended to tournament pivoting11

first implementation of a communication-optimal LU algorithm11

10
Tiskin, FGCS, 2007

11
S., Demmel, Euro-Par, 2011

Edgar Solomonik Algorithms as Multilinear Tensor Equations 17/32

Communication-efficient QR factorization

WQR = O(n2/
√
cp),SQR = O(

√
cp) using Givens rotations12

Householder form can be reconstructed quickly from TSQR13

Q = I − YTY T → LU(I − Q)→ (Y ,TY T)

enables communication-optimal Householder QR14

Householder aggregation yields performance improvements

 0

 5

 10

 15

 20

144 288 576 1152 2304 4608 9216

Te
ra

flo
ps

#cores

QR weak scaling on Cray XE6 (n=15K to n=131K)

Two-Level CAQR-HR
Elemental QR

ScaLAPACK QR

12
Tiskin, FGCS, 2007

13
Ballard, Demmel, Grigori, Jacquelin, Nguyen, S., IPDPS, 2014

14
S., UCB, 2014

Edgar Solomonik Algorithms as Multilinear Tensor Equations 18/32

Communication-efficient eigenvalue computation

For the dense symmetric matrix eigenvalue problema

WSE = O(n2/
√
cp), SQR = O(

√
cp log2 p)

above costs obtained by left-looking algorithm with Householder
aggregation, however, with increased vertical communication

successive band reduction minimizes both communication costs

a
S., UCB, 2014. S., Hoefler, Demmel, in preparation

Edgar Solomonik Algorithms as Multilinear Tensor Equations 19/32

Synchronization tradeoffs in stencils

Our lower bound analysis extends to sparse iterative methods:15

For computing s applications of a (2m + 1)d -point stencil

FSt · Sd
St = Ω

(
m2d · sd+1

)
WSt · Sd−1

St = Ω
(
md · sd

)
proof requires generalization of Loomis-Whitney inequality to order d
set and order d − 1 projections

time-blocking lowers synchronization and vertical communication costs,
but raises horizontal communication

we suggest alternative approach that minimizes vertical and horizontal
communication, but not synchronization

15
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Edgar Solomonik Algorithms as Multilinear Tensor Equations 20/32

Beyond the Loomis-Whitney inequalities

Loomis-Whitney inequalities are not sufficient for all computations

symmetry preserving tensor contraction algorithms have arbitrary order
projections from order d set

bilinear algorithms16 provide a more general framework

a bilinear algorithm is defined by matrices F (A),F (B),F (C),

c = F (C)[(F (A)Ta) ◦ (F (B)Tb)]

where ◦ is the Hadamard (pointwise) product

communication lower bounds derived based on matrix rank17

16
Pan, Springer, 1984

17
S., Hoefler, Demmel, in preparation

Edgar Solomonik Algorithms as Multilinear Tensor Equations 21/32

Communication cost of symmetry preserving algorithms

For contraction of order s + v tensor with order v + t tensor18

symmetry preserving algorithm requires (s+v+t)!
s!v !t! fewer multiplies

matrix-vector-like algorithms (min(s, v , t) = 0)

vertical communication dominated by largest tensor
horizontal communication asymptotically greater if only unique elements
are stored and s 6= v 6= t

matrix-matrix-like algorithms (min(s, v , t) > 0)

vertical and horizontal communication costs asymptotically greater for
symmetry preserving algorithm when s 6= v 6= t

18
S., Hoefler, Demmel; Technical Report, ETH Zurich, 2015.

Edgar Solomonik Algorithms as Multilinear Tensor Equations 22/32

Tensor algebra as a programming abstraction

Cyclops Tensor Framework19

contraction/summation/functions of tensors

distributed symmetric-packed/sparse storage via cyclic layout

parallelization via MPI+OpenMP(+CUDA)

19
S., Hammond, Demmel, UCB, 2011. S., Matthews, Hammond, Demmel, IPDPS, 2013

Edgar Solomonik Algorithms as Multilinear Tensor Equations 23/32

Tensor algebra as a programming abstraction

Cyclops Tensor Framework

contraction/summation/functions of tensors

distributed symmetric-packed/sparse storage via cyclic layout

parallelization via MPI+OpenMP(+CUDA)

Jacobi iteration (solves Ax = b iteratively) example code snippet

Vector <> Jacobi(Matrix <> A, Vector <> b, int n){
... // split A = R + diag (1./d)
do {

x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual

} while (r.norm2() > 1.E-6); // check for convergence
return x;

}

Edgar Solomonik Algorithms as Multilinear Tensor Equations 23/32

Tensor algebra as a programming abstraction

Cyclops Tensor Framework

contraction/summation/functions of tensors

distributed symmetric-packed/sparse storage via cyclic layout

parallelization via MPI+OpenMP(+CUDA)

Jacobi iteration (solves Ax = b iteratively) example code snippet

Vector <> Jacobi(Matrix <> A, Vector <> b, int n){
Matrix <> R(A);
R["ii"] = 0.0;
Vector <> x(n), d(n), r(n);
Function <> inv ([](double & d){ return 1./d; });
d["i"] = inv(A["ii"]); // set d to inverse of diagonal of A
do {

x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual

} while (r.norm2() > 1.E-6); // check for convergence
return x;

}

Edgar Solomonik Algorithms as Multilinear Tensor Equations 23/32

Tensor algebra as a programming abstraction

Cyclops Tensor Framework

contraction/summation/functions of tensors

distributed symmetric-packed/sparse storage via cyclic layout

parallelization via MPI+OpenMP(+CUDA)

Møller-Plesset perturbation theory (MP3) code snippet

Z["abij"] += Fab["af"]*T["fbij"];
Z["abij"] -= Fij["ni"]*T["abnj"];
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];
Z["abij"] -= Vaibj["amei"]*T["ebmj"];

Edgar Solomonik Algorithms as Multilinear Tensor Equations 23/32

Betweenness centrality

Betweenness centrality code snippet, for k of n nodes

void btwn_central(Matrix <int > A, Matrix <path > P, int n, int k){
Monoid <path > mon(...,

[](path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

}, ...);

Matrix <path > Q(n,k,mon); // shortest path matrix
Q["ij"] = P["ij"];

Function <int ,path > append ([](int w, path p){
return path(w+p.w, p.m);

};);

for (int i=0; i<n; i++)
Q["ij"] = append(A["ik"],Q["kj"]);

...
}

Edgar Solomonik Algorithms as Multilinear Tensor Equations 24/32

Performance of CTF for dense computations

CTF is highly tuned for massively-parallel machines

virtualized multidimensional processor grids

topology-aware mapping and collective communication

performance-model-driven decomposition done at runtime

optimized redistribution kernels for tensor transposition

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

4096 8192 16384 32768 65536 131072 262144

Te
ra

flo
p/

s

#cores

BG/Q matrix multiplication

CTF
Scalapack

Edgar Solomonik Algorithms as Multilinear Tensor Equations 25/32

Performance of CTF for sparse computations

MP3 leveraging sparse-dense tensor contractionsa

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44

24 48 96 192 384

se
co

nd
s/

ite
ra

tio
n

#cores

Weak scaling of MP3 (m=40, n=160 on 24 cores)

dense
16% sparse
8% sparse
4% sparse
2% sparse
1% sparse

 0

 2

 4

 6

 8

 10

 12

 14

 16

24 48 96 192 384 768

se
co

nd
s/

ite
ra

tio
n

#cores

Strong scaling of MP3 with m=40, n=160

dense
16% sparse
8% sparse
4% sparse
2% sparse
1% sparse

All-pairs shortest-paths based on path doubling with sparsificationa

 0

 20

 40

 60

 80

 100

 120

 140

24 48 96 192 384

se
co

nd
s

#cores

Weak scaling of APSP (n=2K on 24 cores)

regular path doubling
sparse path doubling

 0

 4

 8

 12

 16

 20

 24

24 48 96 192 384 768

se
co

nd
s

#cores

Strong scaling of APSP with n=2K

regular path doubling
sparse path doubling

a
S., Hoefler, Demmel, arXiv, 2015

Edgar Solomonik Algorithms as Multilinear Tensor Equations 26/32

Coupled cluster methods

Coupled cluster provides a systematically improvable approximation to the
manybody time-independent Schrödinger equation H|Ψ〉 = E |Ψ〉

the Hamiltonian has one- and two- electron components H = F + V

Hartree-Fock (SCF) computes mean-field Hamiltonian: F , V

Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) consider
transitions of (doubles, triples, and quadruples) of electrons to
unoccupied orbitals, encoded by tensor operator
T = T1 + T2 + T3 + T4

they use an exponential ansatz for the wavefunction, Ψ = eTφ
where φ is a Slater determinant

expanding 0 = 〈φ′|H|Ψ〉 yields nonlinear equations for {Ti} in F ,V

0 = V ab
ij + P(a, b)

∑
e

T ae
ij F b

e −
1

2
P(i , j)

∑
mnef

T ab
imVmn

ef T ef
jn + . . .

where P is an antisymmetrization operator

Edgar Solomonik Algorithms as Multilinear Tensor Equations 27/32

CCSD using CTF

Extracted from Aquarius (Devin Matthews’ code,
https://github.com/devinamatthews/aquarius)

FMI["mi"] += 0.5*WMNEF["mnef"]*T2["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T2["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T2["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T2["afin"];

Z2["abij"] = WMNEF["ijab"];
Z2["abij"] += FAE["af"]*T2["fbij"];
Z2["abij"] -= FMI["ni"]*T2["abnj"];
Z2["abij"] += 0.5*WABEF["abef"]*T2["efij"];
Z2["abij"] += 0.5*WMNIJ["mnij"]*T2["abmn"];
Z2["abij"] -= WAMEI["amei"]*T2["ebmj"];

CTF-based CCSD codes exist in Aquarius, QChem, VASP, and Psi4

Edgar Solomonik Algorithms as Multilinear Tensor Equations 28/32

https://github.com/devinamatthews/aquarius

Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum
chemistry method suite

provides CCSD and CCSDT

derives equations via Tensor Contraction Engine (TCE)

generates contractions as blocked loops leveraging Global Arrays

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSD on Edison

NWChem w20
w15
w10
w8

Aquarius-CTF w20
w15
w10
w8

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSDT on Edison

NWChem w3
w2

Aquarius-CTF w4
w3
w2

Edgar Solomonik Algorithms as Multilinear Tensor Equations 29/32

Coupled cluster on IBM BlueGene/Q and Cray XC30

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZa

 4

 8

 16

 32

 64

 128

 256

 512

 1024

512 1024 2048 4096 8192 16384 32768

Te
ra

flo
ps

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 10

 20

 30

 40

 50

 60

512 1024 2048 4096 8192 16384

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 1

 2
 4

 8
 16

 32
 64

 128
 256

 512

32 64 128 256 512 1024 2048 4096

Te
ra

flo
ps

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 50

 100

 150

 200

 250

 300

 350

32 64 128 256 512 1024 2048 4096

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

a
S., Matthews, Hammond, Demmel, JPDC, 2014

Edgar Solomonik Algorithms as Multilinear Tensor Equations 30/32

Summary of contributions

Novel results described in this talk:
symmetry preserving algorithms

reduce number of multiplications in symmetric contractions by ω!
reduce cost of basic Hermitian matrix operations by 25%
reduce cost of some contractions in coupled cluster by 2X in CCSD (1.3X
overall), 4X in CCSDT (2.1X overall), 9X in CCSDTQ

communication and synchronization lower bounds
tradeoffs: synchronization vs computation or communication in TRSV,
Cholesky, and stencils
rank-based lower bounds to analyze symmetric contractions

communication avoiding dense matrix factorizations
new algorithms and implementations with up to p1/6 less communication
for LU, QR, symmetric eigenvalue problem
speed-ups of up to 2X for LU and QR over vendor-optimized libraries

Cyclops Tensor Framework
first fully robust distributed-memory tensor contraction library
supports symmetry, sparsity, general algebraic structures
coupled cluster performance more than 10X faster than state-of-the-art,
reaching 1 petaflop/s performance

Edgar Solomonik Algorithms as Multilinear Tensor Equations 31/32

Impact and future work

symmetry in tensor computations

cost improvements → fast library implementations → application speed-ups
study symmetries in tensor equations and factorizations
consider other symmetries and relation to fast matrix multiplication

communication-avoiding algorithms

existing fast implementations already used by applications (e.g. QBox)
find efficient methods of searching larger tuning spaces
algorithms for computing eigenvectors, SVD, tensor factorizations
study communication-efficiency of randomized algorithms

Cyclops Tensor Framework

already widely-adapted in quantum chemistry, many requests for features
study algorithms for tensor expressions → factorization, scheduling, ...
engage new application domains (via sparsity and algebraic structures)

tensor networks for condensed matter-physics, particle methods
graph algorithms, discrete data analysis
graphics, computer vision, machine learning

Edgar Solomonik Algorithms as Multilinear Tensor Equations 32/32

Backup slides

Edgar Solomonik Algorithms as Multilinear Tensor Equations 33/32

Symmetry preserving algorithm vs Strassen’s algorithm

 1

 2

 4

 8

 16

 32

 64

10 100 1000 10000 100000 1e+06

[n
ω
/(s

!t!
v!

)]
/ #

m
ul

tip
lic

at
io

ns
(s

pe
ed

-u
p

ov
er

 c
la

ss
ic

al
 d

ire
ct

 e
va

lu
at

io
n

al
g.

)

ns/s! (matrix dimension)

Symmetry preserving alg. vs Strassen’s alg. (s=t=v=ω/3)

Strassen’s algorithm
Sym. preserving ω=6
Sym. preserving ω=3

Edgar Solomonik Algorithms as Multilinear Tensor Equations 34/32

Nesting of bilinear algorithms

Given two bilinear algorithms:

Λ1 =(F
(A)
1 ,F

(B)
1 ,F

(C)
1)

Λ2 =(F
(A)
2 ,F

(B)
2 ,F

(C)
2)

We can nest them by computing their tensor product

Λ1 ⊗ Λ2 :=(F
(A)
1 ⊗ F

(A)
2 ,F

(B)
1 ⊗ F

(B)
2 ,F

(C)
1 ⊗ F

(C)
2)

rank(Λ1 ⊗ Λ2) = rank(Λ1) · rank(Λ2)

Edgar Solomonik Algorithms as Multilinear Tensor Equations 35/32

Block-cyclic algorithm for s-step methods

For s-steps of a (2m + 1)d -point stencil with block-size of H1/d/m,

WKr = O

(
msnd

H1/dp

)
SKr = O(snd/(pH)) QKr = O

(
msnd

H1/dp

)
which are good when H = Θ(nd/p), so the algorithm is useful when the
cache size is a bit smaller than nd/p

Edgar Solomonik Algorithms as Multilinear Tensor Equations 36/32

2.5D LU on MIC

 100

 150

 200

 250

 300

 350

 400

 450

16 32 64 128 256

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Stampede (MIC + Sandy Bridge)

2.5D hybrid LU n=131,072
2D hybrid LU n=131,072

2.5D pure-cpu LU n=131,072
2.5D hybrid LU n=65,536

2D hybrid LU n=65,536
2.5D pure-cpu LU n=65,536

Edgar Solomonik Algorithms as Multilinear Tensor Equations 37/32

Topology-aware mapping on BG/Q

 0

 20

 40

 60

 80

 100

256 512 1024 2048 4096

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Mira (BG/Q), n=65,536

2D LU, custom mapping
2D LU, default mapping

Edgar Solomonik Algorithms as Multilinear Tensor Equations 38/32

Symmetric matrix representation

Edgar Solomonik Algorithms as Multilinear Tensor Equations 39/32

Blocked distributions of a symmetric matrix

Edgar Solomonik Algorithms as Multilinear Tensor Equations 40/32

Cyclic distribution of a symmetric matrix

Edgar Solomonik Algorithms as Multilinear Tensor Equations 41/32

Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

τ abij = tabij +
1

2
Pa
bP

i
j t

a
i t

b
j ,

F̃m
e = f me +

∑
fn

vmn
ef t fn ,

F̃ a
e = (1− δae)f ae −

∑
m

F̃m
e tam −

1

2

∑
mnf

vmn
ef tafmn +

∑
fn

vanef t
f
n ,

F̃m
i = (1− δmi)f

m
i +

∑
e

F̃m
e tei +

1

2

∑
nef

vmn
ef tefin +

∑
fn

vmn
if t fn ,

Edgar Solomonik Algorithms as Multilinear Tensor Equations 42/32

Our CCSD factorization

W̃mn
ei = vmn

ei +
∑
f

vmn
ef t fi ,

W̃mn
ij = vmn

ij + P i
j

∑
e

vmn
ie tej +

1

2

∑
ef

vmn
ef τ

ef
ij ,

W̃ am
ie = v am

ie −
∑
n

W̃mn
ei tan +

∑
f

vma
ef t fi +

1

2

∑
nf

vmn
ef tafin ,

W̃ am
ij = v am

ij + P i
j

∑
e

v am
ie tej +

1

2

∑
ef

v am
ef τ

ef
ij ,

zai = f ai −
∑
m

F̃m
i tam +

∑
e

f ae t
e
i +

∑
em

vma
ei tem +

∑
em

v ae
im F̃

m
e +

1

2

∑
efm

v am
ef τ

ef
im

− 1

2

∑
emn

W̃mn
ei teamn,

zabij = v ab
ij + P i

j

∑
e

v ab
ie tej + Pa

bP
i
j

∑
me

W̃ am
ie tebmj − Pa

b

∑
m

W̃ am
ij tbm

+ Pa
b

∑
e

F̃ a
e t

eb
ij − P i

j

∑
m

F̃m
i tabmj +

1

2

∑
ef

v ab
ef τ

ef
ij +

1

2

∑
mn

W̃mn
ij τ abmn,

Edgar Solomonik Algorithms as Multilinear Tensor Equations 43/32

Stability of symmetry preserving algorithms

Edgar Solomonik Algorithms as Multilinear Tensor Equations 44/32

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000
orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
v -orbitals, o-electrons

kernel % of time complexity architectural bounds

DGEMM 45% O(v4o2/p) flops/mem bandwidth

broadcasts 20% O(v4o2/p
√
M) multicast bandwidth

prefix sum 10% O(p) allreduce bandwidth

data packing 7% O(v2o2/p) integer ops

all-to-all-v 7% O(v2o2/p) bisection bandwidth

tensor folding 4% O(v2o2/p) memory bandwidth

Edgar Solomonik Algorithms as Multilinear Tensor Equations 45/32

Tiskin’s path doubling algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations. We
can partition each Ak by path size (number of edges)

Ak = I⊕ Ak(1)⊕ Ak(2)⊕ . . .⊕ Ak(k)

where each Ak(l) contains the shortest paths of up to k ≥ l edges, which
have exactly l edges. We can see that

Al(l) ≤ Al+1(l) ≤ . . . ≤ An(l) = A∗(l),

in particular A∗(l) corresponds to a sparse subset of Al(l).
The algorithm works by picking l ∈ [k/2, k] and computing

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

which finds all paths of size up to 3k/2 by taking all paths of size exactly
l ≥ k/2 followed by all paths of size up to k .

Edgar Solomonik Algorithms as Multilinear Tensor Equations 46/32

	Symmetry-preserving tensor algorithms
	Communication-avoiding parallel algorithms
	A massively-parallel tensor framework
	Applications to electronic structure calculations
	Conclusion

