
Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Efficient algorithms for symmetric tensor
contractions

Edgar Solomonik

1 Department of EECS, UC Berkeley

Oct 22, 2013

1 / 42 Edgar Solomonik Symmetric tensor contractions 1/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Motivation

The goal is to design a parallel numerical library for tensor algebra

motivation comes from high-accuracy quantum chemistry
applications

desire to support user-defined tensor types

algebraic rings allow definition of tensor algebra for any type

This talk will cover two major topics

Part I: Symmetric matrix computations, tensor contraction
preliminaries

Part II: Cyclops Tensor Framework

2 / 42 Edgar Solomonik Symmetric tensor contractions 2/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Outline

1 Introduction

2 Symmetry in matrices
Multiplication by symmetric matrices
Symmetrized product
Multiplication on the symmetric matrix ring

3 Distributed-memory tensor contractions
NWChem
Cyclops Tensor Framework

4 Performance
Sequential performance
Parallel scalability

5 Conclusions

3 / 42 Edgar Solomonik Symmetric tensor contractions 3/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Care for type definitions (algebraic ring)

We consider vectors and matrices on any commutative ring
% = (R,+,×)

The following are equivalent in our notation a× b = a · b = ab

Rings ensure associativity of + and distributivity of ×
Commutativity of the ring ensures ∀a, b ∈ R : a · b = b · a
Floating point arithmetic does not define a ring due to
non-associativity of rounding

Multiplication of n-by-n matrices of reals defines a
non-commutative ring with R = Rn×n

We denote the computational cost of addition (+) on ring %
as α% and of multiplication (×) on % as β%

4 / 42 Edgar Solomonik Symmetric tensor contractions 4/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Care for type definitions (algebraic ring)

We consider vectors and matrices on any commutative ring
% = (R,+,×)

The following are equivalent in our notation a× b = a · b = ab

Rings ensure associativity of + and distributivity of ×

Commutativity of the ring ensures ∀a, b ∈ R : a · b = b · a
Floating point arithmetic does not define a ring due to
non-associativity of rounding

Multiplication of n-by-n matrices of reals defines a
non-commutative ring with R = Rn×n

We denote the computational cost of addition (+) on ring %
as α% and of multiplication (×) on % as β%

4 / 42 Edgar Solomonik Symmetric tensor contractions 4/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Care for type definitions (algebraic ring)

We consider vectors and matrices on any commutative ring
% = (R,+,×)

The following are equivalent in our notation a× b = a · b = ab

Rings ensure associativity of + and distributivity of ×
Commutativity of the ring ensures ∀a, b ∈ R : a · b = b · a

Floating point arithmetic does not define a ring due to
non-associativity of rounding

Multiplication of n-by-n matrices of reals defines a
non-commutative ring with R = Rn×n

We denote the computational cost of addition (+) on ring %
as α% and of multiplication (×) on % as β%

4 / 42 Edgar Solomonik Symmetric tensor contractions 4/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Care for type definitions (algebraic ring)

We consider vectors and matrices on any commutative ring
% = (R,+,×)

The following are equivalent in our notation a× b = a · b = ab

Rings ensure associativity of + and distributivity of ×
Commutativity of the ring ensures ∀a, b ∈ R : a · b = b · a
Floating point arithmetic does not define a ring due to
non-associativity of rounding

Multiplication of n-by-n matrices of reals defines a
non-commutative ring with R = Rn×n

We denote the computational cost of addition (+) on ring %
as α% and of multiplication (×) on % as β%

4 / 42 Edgar Solomonik Symmetric tensor contractions 4/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Care for type definitions (algebraic ring)

We consider vectors and matrices on any commutative ring
% = (R,+,×)

The following are equivalent in our notation a× b = a · b = ab

Rings ensure associativity of + and distributivity of ×
Commutativity of the ring ensures ∀a, b ∈ R : a · b = b · a
Floating point arithmetic does not define a ring due to
non-associativity of rounding

Multiplication of n-by-n matrices of reals defines a
non-commutative ring with R = Rn×n

We denote the computational cost of addition (+) on ring %
as α% and of multiplication (×) on % as β%

4 / 42 Edgar Solomonik Symmetric tensor contractions 4/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Care for type definitions (algebraic ring)

We consider vectors and matrices on any commutative ring
% = (R,+,×)

The following are equivalent in our notation a× b = a · b = ab

Rings ensure associativity of + and distributivity of ×
Commutativity of the ring ensures ∀a, b ∈ R : a · b = b · a
Floating point arithmetic does not define a ring due to
non-associativity of rounding

Multiplication of n-by-n matrices of reals defines a
non-commutative ring with R = Rn×n

We denote the computational cost of addition (+) on ring %
as α% and of multiplication (×) on % as β%

4 / 42 Edgar Solomonik Symmetric tensor contractions 4/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Symmetric matrix times vector

Let b be a vector of length n with elements on %

Let A be a n-by-n symmetric matrix with elements on %

Aij = Aji

We can multiply matrix A by b,

c = A · b

ci =
n∑

j=1

Aijbj (1)

this corresponds to BLAS routine symv

Tsymv(%, n) = α% · n2 + β% · n2

5 / 42 Edgar Solomonik Symmetric tensor contractions 5/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Fast symmetric matrix times vector

Evidently, we can perform symv using fewer element-wise
multiplications,

ci =
n∑

j=1

Aij · (bi + bj)−

 n∑
j=1

Aij

 bi

This transformation requires an additive inverse on %

Aij · (bi + bj) is symmetric, and can be computed with
n(n + 1)/2 element-wise multiplications(∑n

j=1 Aij

)
bi may be computed with n multiplications

The total cost of Equation 2 is

T ′symv(%, n) = α% ·
5

2
n2 + β% ·

1

2
n2

This formulation is cheaper when β% > 3α%

6 / 42 Edgar Solomonik Symmetric tensor contractions 6/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Symmetric matrix times nonsymmetric matrix

Now consider the multiplication of A by another n-by-K
matrix B

C = A · B

Cik =
n∑

j=1

AijBjk (2)

This operation corresponds to the BLAS routine symm

We can compute this with K matrix vector products for a cost

Tsymm(%, n,K ) = K · Tsymv(%, n) = α% · Kn2 + β% · Kn2.

7 / 42 Edgar Solomonik Symmetric tensor contractions 7/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Fast symmetric matrix times nonsymmetric matrix

Using the new symmetric-vector product algorithm, we have
the reformulation

Cik =
n∑

j=1

Aij · (Bik + Bjk)−

 n∑
j=1

Aij

Bik .

The cost of
∑n

j=1 Aij is amortized over the K vectors

The total new cost is given to leading order by

T ′symm(%, n,K ) = α% ·
3

2
Kn2 + β% ·

1

2
Kn2.

The reformulation is cheaper when n,K � 1 and α% < β%

8 / 42 Edgar Solomonik Symmetric tensor contractions 8/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Symmetric rank-2 update

Consider a rank-2 outer product of vectors a and b of length n into
symmetric matrix C

C = a · bT + b · aT

Ci≤j = ai · bj + aj · bi . (3)

For floating point arithmetic, this is the BLAS routine syr2

The routine may be computed from the intermediate
Zij = ai · bj with the cost

Tsyr2(%, n) = α% · n2 + β% · n2.

9 / 42 Edgar Solomonik Symmetric tensor contractions 9/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Fast symmetric rank-2 update

We may compute the rank-2 update via a symmetric intermediate
quantity

Ci≤j = (ai + aj) · (bi + bj)− ai · bi − aj · bj . (4)

We can compute the symmetric Zi≤j = (ai + aj) · (bi + bj) in
n(n + 1)/2 multiplications

The total cost is then given to leading order by

T ′syr2(%, n) = α% ·
5

2
n2 + β% ·

1

2
n2.

T ′syr2(%, n) < Tsyr2(%, n) when β% > 3α%

10 / 42 Edgar Solomonik Symmetric tensor contractions 10/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Symmetric rank-2K update

Consider a rank-K symmetric update of matrix A and B of size
n-by-K ,

C = A · BT + B · AT

Ci≤j =
K∑

k=1

(Aik · Bjk + Ajk · Bik) . (5)

For floating point arithmetic, this is the BLAS routine syr2k

Symmetric matrix C may be computed via K rank-2 updates
for a cost

Tsyr2K(%, n,K ) = K · Tsyr2(%, n) = α% · Kn2 + β% · Kn2.

11 / 42 Edgar Solomonik Symmetric tensor contractions 11/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Fast symmetric rank-2K update

Using a symmetric intermediate we can compute the rank-2K
update using fewer ring multiplications

Ci≤j =
K∑

k=1

((Aik + Ajk) · (Bik + Bjk)− Aik · Bik − Ajk · Bjk) .

Here we amortize the cost of the last two terms due to having
K � 1 rank-2 updates

The cost requires half the leading order multiplications of the
old algorithm

T ′syr2K(%, n,K ) = α% ·
3

2
Kn2 + β% ·

1

2
Kn2.

The reformulation is cheaper when n,K � 1 and α% < β%

12 / 42 Edgar Solomonik Symmetric tensor contractions 12/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Symmetric-matrix by symmetric-matrix multiplication

Given symmetric matrices A,B of dimension n with elements on
commutative ring % = (R,+,×), we seek to compute

C = A · B + B · A

Ci≤j =
n∑

k=1

(Aik · Bjk + Ajk · Bik) . (6)

The above equations requires n3 multiplications and n3 adds for a
total cost of

Tsyrmm(%, n) = α% · n3 + β% · n3.

This routine is a bit more extravagant and is not in the BLAS

13 / 42 Edgar Solomonik Symmetric tensor contractions 13/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Fast symmetric-matrix by symmetric-matrix multiplication

We can combine the ideas from the fast routines for symv and
syrk by forming an intermediate Zijk which is symmetric in all
three indices,

wi =
n∑

k=1

Aik xi =
n∑

k=1

Bik yi =
n∑

k=1

Aik · Bik

Zi≤j≤k =(Aij + Aik + Ajk) · (Bij + Bik + Bjk)

Ci≤j =
n∑

k=1

Zijk − n · Aij · Bij − yi − yj − wi · Bij − Aij · xj (7)

The reformulation requires a sixth of the multiplications to leading
order,

T ′syrmm(%, n) = α% ·
5

3
n3 + β% ·

1

6
n3.

14 / 42 Edgar Solomonik Symmetric tensor contractions 14/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

The ring of symmetric matrices

The set of real symmetric matrices S ⊂ Rn×n is not closed under
normal matrix multiplications, because the product of two
symmetric matrices is not generally symmetric. However, we can
define a ring ς = (S,+,�) with + being regular addition � defined
as

A� B = A · B + B · A

Ci≤j =
n∑

k=1

(AikBkj + AjkBki ) .

This ring anticommutator multiplication preserves symmetry and is
commutative since A� B = B� A.
Assuming the cost of real adds and multiplications is the same (as
it is for the floating point representation of reals), we define the
element-wise costs of ring ς as ας = n2 for each addition and
βς = 2n3 for each multiplication by the symmetric operator �.

15 / 42 Edgar Solomonik Symmetric tensor contractions 15/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Symmetric matrix multiplication on the ring ς

Define symmetric m-by-m matrices A and B whose elements are
elements of the ring ς. A and B are 4D tensors of reals which are
partially symmetric in two pairs of indices. Consider,

C = A� B + B �A

Cp≤q =
m∑
r=1

(Apr � Brq + Aqr � Brp)

=
m∑
r=1

(Apr · Brq + Bpr · Arq + Aqr · Brp + Bqr · Arp)

Cp≤q
i≤j =

m∑
r=1

n∑
k=1

(
Apr
ik · B

rq
kj + Apr

jk · B
rq
ki + Aqr

ik · B
rp
kj + Aqr

jk · B
rp
ki

)
Using the new symmetric-matrix by symmetric-matrix
multiplication algorithm lowers the leading cost of this tensor
contraction from 2m3n3 to 1

3m3n3.

16 / 42 Edgar Solomonik Symmetric tensor contractions 16/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Tensor contractions in the real world

The fast symmetric 4D tensor contraction algorithm does not apply
to any contractions needed by Coupled Cluster. One of the leading
order terms in Coupled Cluster is similar for 4D tensors T and V

W = T · V · T T + T T · V · T

W mn
ij =

∑
klrs

Tmr
ik · V rs

kl · T sn
lj + Tmr

jk · V rs
kl · T sn

li + . . .

Here we adapt the standard raised and lowered index tensor
notation, where upper indices are contracted with lower indices and
rewrite the above as

W mn
ij =

∑
klrs

Tmr
ik · V kl

rs · T sn
lj + Tmr

jk · V kl
rs · T sn

li + . . .

17 / 42 Edgar Solomonik Symmetric tensor contractions 17/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

NWChem

NWChem is a scientific package for electronic structure
calculations

Tensor Contraction Engine (TCE)

compiler technology which factorizes multi-term contractions
synthesizes Global Arrays code for each contraction

Global Arrays

distributed memory PGAS runtime system
provides one-sided get and put operations

Uses load-balancing to handle tensor symmetry efficiently

18 / 42 Edgar Solomonik Symmetric tensor contractions 18/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

TCE

19 / 42 Edgar Solomonik Symmetric tensor contractions 19/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

NWChem approach to contractions

A high-level description of NWChem’s algorithm for tensor
contractions:

data layout is abstracted away by the Global Arrays framework

Global Arrays uses one-sided communication for data
movement

packed tensors are stored in blocks

for each contraction, each process does a subset of the block
contractions

each block is transposed and unpacked prior to contraction

dynamic load balancing is employed among processors

20 / 42 Edgar Solomonik Symmetric tensor contractions 20/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Cyclops Tensor Framework (CTF)

Bulk synchronous distributed memory C++
MPI/OpenMP/BLAS-based library for tensor contractions

does not require language or compiler support

provides primitives for distributed memory tensor data

automatically supports symmetry in tensors

uses internal data mapping and redistribution

exposes sparse remote data access and tensor slicing

uses C++ templated interface which corresponds to Einstein
notation

W[“MnIj”] = V[“MnEf”] ∗ T[“EfIj”];

Z[“AbIj”] = W[“MnIj”] ∗ T[“AbMn”];

W ,V ,T ,Z are tCTF Tensor objects, W[“MnIj”] is a
tCTF Idx Tensor object

21 / 42 Edgar Solomonik Symmetric tensor contractions 21/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Cyclops Tensor Framework (CTF)

Bulk synchronous distributed memory C++
MPI/OpenMP/BLAS-based library for tensor contractions

does not require language or compiler support

provides primitives for distributed memory tensor data

automatically supports symmetry in tensors

uses internal data mapping and redistribution

exposes sparse remote data access and tensor slicing

uses C++ templated interface which corresponds to Einstein
notation

W[“MnIj”] = V[“MnEf”] ∗ T[“EfIj”];

Z[“AbIj”] = W[“MnIj”] ∗ T[“AbMn”];

W ,V ,T ,Z are tCTF Tensor objects, W[“MnIj”] is a
tCTF Idx Tensor object

21 / 42 Edgar Solomonik Symmetric tensor contractions 21/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Cyclops Tensor Framework (CTF)

Bulk synchronous distributed memory C++
MPI/OpenMP/BLAS-based library for tensor contractions

does not require language or compiler support

provides primitives for distributed memory tensor data

automatically supports symmetry in tensors

uses internal data mapping and redistribution

exposes sparse remote data access and tensor slicing

uses C++ templated interface which corresponds to Einstein
notation

W[“MnIj”] = V[“MnEf”] ∗ T[“EfIj”];

Z[“AbIj”] = W[“MnIj”] ∗ T[“AbMn”];

W ,V ,T ,Z are tCTF Tensor objects, W[“MnIj”] is a
tCTF Idx Tensor object

21 / 42 Edgar Solomonik Symmetric tensor contractions 21/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Cyclops Tensor Framework (CTF)

Bulk synchronous distributed memory C++
MPI/OpenMP/BLAS-based library for tensor contractions

does not require language or compiler support

provides primitives for distributed memory tensor data

automatically supports symmetry in tensors

uses internal data mapping and redistribution

exposes sparse remote data access and tensor slicing

uses C++ templated interface which corresponds to Einstein
notation

W[“MnIj”] = V[“MnEf”] ∗ T[“EfIj”];

Z[“AbIj”] = W[“MnIj”] ∗ T[“AbMn”];

W ,V ,T ,Z are tCTF Tensor objects, W[“MnIj”] is a
tCTF Idx Tensor object

21 / 42 Edgar Solomonik Symmetric tensor contractions 21/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Cyclops Tensor Framework (CTF)

Bulk synchronous distributed memory C++
MPI/OpenMP/BLAS-based library for tensor contractions

does not require language or compiler support

provides primitives for distributed memory tensor data

automatically supports symmetry in tensors

uses internal data mapping and redistribution

exposes sparse remote data access and tensor slicing

uses C++ templated interface which corresponds to Einstein
notation

W[“MnIj”] = V[“MnEf”] ∗ T[“EfIj”];

Z[“AbIj”] = W[“MnIj”] ∗ T[“AbMn”];

W ,V ,T ,Z are tCTF Tensor objects, W[“MnIj”] is a
tCTF Idx Tensor object

21 / 42 Edgar Solomonik Symmetric tensor contractions 21/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Cyclops Tensor Framework (CTF)

Bulk synchronous distributed memory C++
MPI/OpenMP/BLAS-based library for tensor contractions

does not require language or compiler support

provides primitives for distributed memory tensor data

automatically supports symmetry in tensors

uses internal data mapping and redistribution

exposes sparse remote data access and tensor slicing

uses C++ templated interface which corresponds to Einstein
notation

W[“MnIj”] = V[“MnEf”] ∗ T[“EfIj”];

Z[“AbIj”] = W[“MnIj”] ∗ T[“AbMn”];

W ,V ,T ,Z are tCTF Tensor objects, W[“MnIj”] is a
tCTF Idx Tensor object

21 / 42 Edgar Solomonik Symmetric tensor contractions 21/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Cyclops Tensor Framework (CTF)

Bulk synchronous distributed memory C++
MPI/OpenMP/BLAS-based library for tensor contractions

does not require language or compiler support

provides primitives for distributed memory tensor data

automatically supports symmetry in tensors

uses internal data mapping and redistribution

exposes sparse remote data access and tensor slicing

uses C++ templated interface which corresponds to Einstein
notation

W[“MnIj”] = V[“MnEf”] ∗ T[“EfIj”];

Z[“AbIj”] = W[“MnIj”] ∗ T[“AbMn”];

W ,V ,T ,Z are tCTF Tensor objects, W[“MnIj”] is a
tCTF Idx Tensor object

21 / 42 Edgar Solomonik Symmetric tensor contractions 21/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Cyclops Tensor Framework (CTF) approach to contractions

A high-level description of CTF’s algorithm for tensor contractions:

packed tensors are decomposed cyclically among toroidal
processor grids

MPI collectives are used for all communication

for each contraction, a distributed layout is selected based on
internal performance models

performance model considers all possible execution paths

before contraction, tensors are redistributed to a new layout

if there is enough memory, the tensors are (partially) unpacked

all preserved symmetries and non-symmetric indices are folded
in preparation for matrix multiplication

nested distributed matrix multiply algorithms are used to
perform the contraction in a load-balanced manner

22 / 42 Edgar Solomonik Symmetric tensor contractions 22/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Multidimensional processor grids

CTF supports tensors and processor grids of any dimension
because mapping a symmetric tensor to a processor grid of the
same dimension preserves symmetric structure with minimal
virtualization and padding. Processor grids are defined by

a base grid, obtained from the physical topology or from
factorizing the number of processors

folding all possible combinations of adjacent processor grid
dimensions

Tensors are contracted on higher dimensional processor grids by

mapping an index shared by two tensors in the contraction to
different processor grid dimensions

running a distributed matrix multiplication algorithm for each
such ’mismatched’ index

replicating data along some processor dimensions ’a la 2.5D’

23 / 42 Edgar Solomonik Symmetric tensor contractions 23/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Blocked vs block-cyclic vs cyclic decompositions

Blocked layout Block-cyclic layout Cyclic layout

Red denotes padding / load imbalanceGreen denotes fill (unique values)

24 / 42 Edgar Solomonik Symmetric tensor contractions 24/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Virtualization

Matrix multiply on 2x3 processor grid. Red lines represent
virtualized part of processor grid. Elements assigned to blocks by

cyclic phase.

X =

A
B

C

25 / 42 Edgar Solomonik Symmetric tensor contractions 25/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

3D tensor mapping

26 / 42 Edgar Solomonik Symmetric tensor contractions 26/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

A simple data layout

Replicated, distributed nonsymmetric tensor (processor grid)
of nonsymmetric tensors (virtual grid)

of symmetric tensors (folded broken symmetries)
of matrices (unfolded broken and folded preserved symmetries)

The layout typically changes for each tensor between each
contraction.

27 / 42 Edgar Solomonik Symmetric tensor contractions 27/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Tensor redistribution

Our symmetric tensor data layout has a global ordering and a local
ordering

the local data is not in global order

cannot compute local data index from global index

cannot compute global data index from local index

can iterate over local data and obtain global index

can iterate over global data and obtain local index

Given these constraints, it is simplest to compute the global index
of each piece of data and sort.

interface: A[vector of indices] = vector of values

28 / 42 Edgar Solomonik Symmetric tensor contractions 28/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

General data redistribution

We use an algorithm faster than sorting for redistribution

1 iterate over the local data and count where the data must be
sent

2 communicate counts and compute prefix sums to obtain
offsets

3 iterate over the local data in global order and bin it

4 exchange the data (MPI all to all v)

5 iterate over the new local data in global order and retrieve it
from bins

This method is much faster, because it does not explicitly form
and communicate keys for the data.

29 / 42 Edgar Solomonik Symmetric tensor contractions 29/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Threaded general redistribution

In order to hide memory latency and reduce integer operations it is
imperative to thread the redistribution kernel

prefix sums and counts are trivial to thread

to thread the iterator over data, we must give each thread
different global indices

each thread moves the local data corresponding to a global
index partition, preserving the ordering

30 / 42 Edgar Solomonik Symmetric tensor contractions 30/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Interface and code organization

the CTF codebase is currently 30K+ lines of C++ code

CTF provides functionality for general tensor contractions and
summations, including a contraction domain-specific language
(DSL)

Aquarius is a quantum chemistry package being developed by
Devin Matthews

uses CTF for parallel tensor contraction execution
provides a DSL for spin-integrated tensor contractions
gives implementations of CC methods including other
necessary components (e.g. SCF)

efforts are underway to also integrate CTF into the QChem
package

31 / 42 Edgar Solomonik Symmetric tensor contractions 31/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

CCSD code using our domain specific language

32 / 42 Edgar Solomonik Symmetric tensor contractions 32/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Tensor slicing

CTF provides functionality to read/write blocks to tensors,
commonly known as slicing. We can give a simple example of
slicing for matrices in Matlab notation,

A[1 : n/2, 1 : n/2] = B[n/2 + 1 : n, n/2 + 1 : n]

In CTF the general interface is
void slice(int * offsets, int * ends, double beta,

tCTF Tensor & A, int * offsets A, int * ends A, double alpha);
Each tensor in CTF is defined on a CTF World, which corresponds
to a MPI communicator.

CTF allows slicing of tensors between different worlds!

Also plan to generalize slices to ”permutation-slices”

33 / 42 Edgar Solomonik Symmetric tensor contractions 33/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Sequential and multi-threaded performance comparison

CCSD performance on a Xeon E5620, single threaded, Intel MKL.
Entries are average time for one CCSD iteration, for the given
number of virtual (nv ) and occupied (no) orbitals (electrons).

nv = 110 nv = 94 nv = 71
no = 5 no = 11 no = 23

NWChem 1 thread 6.80 sec 16.8 sec 49.1 sec

CTF 1 thread 23.6 sec 32.5 sec 59.8 sec

NWChem 8 threads 5.21 sec 8.60 sec 18.1 sec

CTF 8 threads 9.12 sec 9.37 sec 18.5 sec

34 / 42 Edgar Solomonik Symmetric tensor contractions 34/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

A simple tensor contraction

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

4096 8192 16384 32768 65536 131072 262144

Te
ra

flo
p/

s

#cores

BG/Q matrix multiplication

CTF
Scalapack

Complex matrix multiplication (ZGEMM) of 32K-by-32K matrices
benefits greatly from topology-aware mapping on BG/Q.

35 / 42 Edgar Solomonik Symmetric tensor contractions 35/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Comparison with NWChem on Cray XE6

CCSD iteration time on 64 nodes of Hopper:

system # electrons # orbitals CTF NWChem

w5 25 205 14 sec 36 sec

w7 35 287 90 sec 178 sec

w9 45 369 127 sec -

w12 60 492 336 sec -

On 128 nodes, NWChem completed w9 in 223 sec, CTF in 73 sec.

36 / 42 Edgar Solomonik Symmetric tensor contractions 36/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Blue Gene/Q up to 1250 orbitals, 250 electrons

 100

 200

 300

 400

 500

 600

8192 16384 32768 65536 131072

Te
ra

flo
p/

s

#cores

CCSD weak scaling on Mira (BG/Q)

Aquarius/CTF

37 / 42 Edgar Solomonik Symmetric tensor contractions 37/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Coupled Cluster efficiency on Blue Gene/Q

 0

 0.2

 0.4

 0.6

 0.8

 1

8192 16384 32768 65536 131072

Fr
ac

tio
n 

of
 p

ea
k 

flo
ps

#cores

CCSD weak scaling on Mira (BG/Q)

Aquarius/CTF

38 / 42 Edgar Solomonik Symmetric tensor contractions 38/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and
1000 orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
nv -orbitals, no-electrons, p-processors, M-local memory size

kernel % of time complexity architectural bounds

DGEMM 45% O(n4
vn2

o/p) flops/mem bandwidth

broadcasts 20% O(n4
vn2

o/p
√

M) multicast bandwidth

prefix sum 10% O(p) allreduce bandwidth

data packing 7% O(n2
vn2

o/p) integer ops

all-to-all-v 7% O(n2
vn2

o/p) bisection bandwidth

tensor folding 4% O(n2
vn2

o/p) memory bandwidth

39 / 42 Edgar Solomonik Symmetric tensor contractions 39/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Performance breakdown on Cray XE6

Performance data for a CCSD iteration with 100 electrons and 500
orbitals on 256 nodes of Hopper
4 processes per node, 6 threads per process
Total time: 9 mins
v -orbitals, o-electrons

kernel % of time complexity architectural bounds

DGEMM 21% ⇓ 24% O(v4o2/p) flops/mem bandwidth

broadcasts 32% ⇑ 12% O(v4o2/p
√

M) multicast bandwidth

prefix sum 7% ⇓ 3% O(p) allreduce bandwidth

data packing 10% ⇑ 3% O(v2o2/p) integer ops

all-to-all-v 8% O(v2o2/p) bisection bandwidth

tensor folding 4% O(v2o2/p) memory bandwidth

40 / 42 Edgar Solomonik Symmetric tensor contractions 40/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

CCSDT performance

Table: CCSDT iteration time for systems of 3 and 4 waters with the
aug-cc-pVDZ basis set:

#nodes w3 CTF w3 NWChem w4 CTF w4 NWChem

32 332 sec 868 sec - -

64 236 sec 775 sec 1013 sec -

128 508 sec 414 sec 745 sec -

So far, the largest CCSDT computation we have completed on
Mira is a 5-water system with 180 virtual orbitals on 4096 nodes of
Mira. Each CCSDT iteration took roughly 30 minutes and 21% of
the execution time was spent in sequential matrix multiplication.

41 / 42 Edgar Solomonik Symmetric tensor contractions 41/ 42



Introduction Symmetry in matrices Distributed-memory tensor contractions Performance Conclusions

Summary, conclusions, and future work

Fast algorithms for symmetric tensor contractions:

exploit symmetry in symv, symm, syr2, and syr2k to reduce
the number of multiplications by 2

exploit symmetry in ring matrix multiplication, to save a
factor of six in multiplications

Factorization of more general physical tensor equations
requires careful consideration of intermediate quantities

Cyclops Tensor Framework (CTF)

parallel numerical library for tensor algebra which provides
’vectorized’ symmetric tensor contraction routines

CTF provides slicing and sparse write primitives for data
extraction and manipulation

For code and more information and complete code see
ctf.cs.berkeley.edu

Future direction: sparse tensor contractions, faster algorithms
42 / 42 Edgar Solomonik Symmetric tensor contractions 42/ 42

ctf.cs.berkeley.edu


Backup slides

43 / 42 Edgar Solomonik Symmetric tensor contractions 43/ 42


	Introduction
	Symmetry in matrices
	Multiplication by symmetric matrices
	Symmetrized product
	Multiplication on the symmetric matrix ring

	Distributed-memory tensor contractions
	NWChem
	Cyclops Tensor Framework

	Performance
	Sequential performance
	Parallel scalability

	Conclusions
	Appendix

