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Definition of a tensor

A rank r tensor is r -dimensional representation of a dataset, for
example,

a rank one tensor is a vector (e.g. a set of nodes V )

a rank two tensor is a matrix (e.g. a set of edges E in a graph
E ⊂ V × V )

Graphically, a rank r tensor is a set of all possible paths P of
length r through vertices V

P ⊂ V × . . .× V︸ ︷︷ ︸
r -times

Alternatively, P may be thought of as a set of hypergraph edges
with cardinality r

Programmatically, a rank r tensor is an r -dimensional array
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Tensor contractions

Given rank 4 tensors T, V, and W we may write perform tensor
contraction as

Wabij =
∑
k

∑
l

Tabkl · Vklij

It is common to use raised and lowered index notation, which is
sometimes related to the physical meaning of the indices,

W ab
ij =

∑
kl

T ab
kl · V kl

ij

raised-indices are usually meant to be contracted with lowered
indices.
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Tensor folding

Since a tensor is a representation of any data set, we may always
switch representations

define transformation δpab to transform a and b into compound
index p (δpab = 1 when p = a + b · n and 0 otherwise)

graphically, folding corresponds to replacing edges with
vertices (W = V × V )

The contraction
W ab

ij =
∑
kl

T ab
kl · V kl

ij

may be folded into matrix multiplication as follows

δpab ·W
ab
ij · δijq =

∑
r

δpab · T
ab
kl · δklr · δrkl · V kl

ij · δijq

W p
q =

∑
r

T p
r · V r

q
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Reasons to use tensor represenations

If all contractions can be folded into matrix multiplication, why use
tensors of rank greater than two?

permutational index symmetry: the tensors may express
higher-dimensional structure

expression of many different contractions with a single
representation (each may require different folding)

finding low-rank tensor decompositions, such as the CP
(CANDECOMP/PARAFAC) decomposition

Tijk ≈
R∑
r

vir · wjr · zkr

This talk will not address low-rank decompositions.
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Application: Coupled Cluster

Coupled Cluster (CC) is a numerical approximation scheme to the
time-independent many-body Schrödinger equation

|Ψ〉 = eT1+T2+T3+...|Φ0〉

where Tk is a rank 2k ’ampltiude’ tensor which correlates sets of k
electrons over sets of k basis-functions (captures k-electron
excitations)

the CCSD method is a truncation at T1 + T2

the CCSDT method also includes T3

The CC methods produce a set of nonlinear equations for the
amplitude tensors which are solved iteratively via tensor
contractions

Given a system of n electrons, the methods require O(n2k)
memory and O(n2k+2) operations
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Motivation and goals

Cyclops (cyclic-operations) Tensor Framework (CTF)

provides primitives for distributed memory tensor contractions

takes advantage of thread (two-level) parallelism

exposes a simple domain specific language for contractions

allows for efficient tensor redistribution and slicing

exploits permutational tensor symmetry efficiently

uses only MPI, BLAS, and OpenMP and is a library
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Define a parallel world

CTF relies on MPI (Message Passing Interface) for multiprocessor
parallelism

a set of processors in MPI corresponds to a communicator
(MPI Comm)

MPI COMM WORLD is the default communicators
containing all processes

CTF World dw(comm) defines an instance of CTF on any
MPI communicator
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Define a tensor

Consider a rank four tensor T (in CC this is the 2-electron T2

amplitude)
T ab
ij

where T is m ×m × n × n antisymmetric in ab and in ij

CTF Tensor T(4,{m,m,n,n},{AS,NS,AS,NS},dw)

an ’AS’ dimension is antisymmetric with the next

symmetric (SY) and symmetric-hollow (SH) are also possible

the first dimension of the tensor is mapped linearly onto
memory

there are also obvious derived types for CTF Tensor:
CTF Matrix, CTF Vector, CTF Scalar
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Contract tensors

CTF can express a tensor contraction like

Z ab
ij = Z ab

ij + 2 · P(a, b)
∑
k

F a
k · T kb

ij

where P(a, b) implies antisymmetrization of index pair ab,

Z[” abij ”] += 2.0∗F[”ak”]∗T[”kbij”]

P(a, b) is applied implicitly if Z is antisymmetric in ab

Z,F,T should all be defined on the same world and all
processes in the world must call the contraction bulk
synchronously

the beginning of the end of all for loops...
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Access and write tensor data

CTF takes away your data pointer

Access arbitrary sparse subsets of the tensor by global index
(coordinate format)

T.write( int ∗ indices , double ∗ data) (also possible to scale)
T.read( int ∗ indices , double ∗ data) (also possible to scale)

Matlab submatrix notation: A[j : k , l : m]

T. slice ( int ∗ offsets , int ∗ ends) returns the subtensor
T. slice ( int corner off , int corner end) does the same
can also sum a subtensor from one tensor with a subtensor of
another tensor
different subworlds can read different subtensors simultaneously

Extract a subtensor of any permutation of the tensor

given mappings P,Q, does B[i , j ] = A[P[i ],Q[j ]] via permute()
P and Q may access only subsets of A (if B is smaller)
B may be defined on subworlds on the world on which A is
defined and each subworld may specify different P and Q
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Extract from CCSD implementation

Extracted from Aquarius (Devin Matthews’ code)

FMI["mi"] += 0.5*WMNEF["mnef"]*T(2)["efin"];

WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T(2)["efij"];

FAE["ae"] -= 0.5*WMNEF["mnef"]*T(2)["afmn"];

WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T(2)["afin"];

Z(2)["abij"] = WMNEF["ijab"];

Z(2)["abij"] += FAE["af"]*T(2)["fbij"];

Z(2)["abij"] -= FMI["ni"]*T(2)["abnj"];

Z(2)["abij"] += 0.5*WABEF["abef"]*T(2)["efij"];

Z(2)["abij"] += 0.5*WMNIJ["mnij"]*T(2)["abmn"];

Z(2)["abij"] -= WAMEI["amei"]*T(2)["ebmj"];
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Extract from CCSDT implemetnation

Extracted from Aquarius (Devin Matthews’ code)

Z(1)["ai"] += 0.25*WMNEF["mnef"]*T(3)["aefimn"];

Z(2)["abij"] += 0.5*WAMEF["bmef"]*T(3)["aefijm"];

Z(2)["abij"] -= 0.5*WMNEJ["mnej"]*T(3)["abeinm"];

Z(2)["abij"] += FME["me"]*T(3)["abeijm"];

Z(3)["abcijk"] = WABEJ["bcek"]*T(2)["aeij"];

Z(3)["abcijk"] -= WAMIJ["bmjk"]*T(2)["acim"];

Z(3)["abcijk"] += FAE["ce"]*T(3)["abeijk"];

Z(3)["abcijk"] -= FMI["mk"]*T(3)["abcijm"];

Z(3)["abcijk"] += 0.5*WABEF["abef"]*T(3)["efcijk"];

Z(3)["abcijk"] += 0.5*WMNIJ["mnij"]*T(3)["abcmnk"];

Z(3)["abcijk"] -= WAMEI["amei"]*T(3)["ebcmjk"];
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Coupled Cluster on IBM BlueGene/Q

CCSD up to 55 water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ
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Coupled Cluster on Cray XC30 Edison

CCSD up to 50 water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ
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Comparison with NWChem

NWChem is a distributed-memory quantum chemistry method
suite

provides CCSD and CCSDT

uses Global Arrays a Partitioned Global Address Space
(PGAS) backend for tensor contractions

derivation automatically done by Tensor Contraction Engine
(TCE)

CCSD performance on Edison (thanks to Jeff Hammond for
building NWChem and collecting data)

NWChem 40 water molecules on 1024 nodes: 44 min

CTF 40 water molecules on 1024 nodes: 9 min
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NWChem approach to contractions

A high-level description of NWChem’s algorithm for tensor
contractions:

data layout is abstracted away by the Global Arrays framework

Global Arrays uses one-sided communication for data
movement

packed tensors are stored in blocks

for each contraction, each process does a subset of the block
contractions

each block is transposed and unpacked prior to contraction

dynamic load balancing is employed among processors
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CTF approach to contractions

A high-level description of CTF’s algorithm for tensor contractions:

packed tensors are decomposed cyclically among toroidal
processor grids

MPI collectives are used for all communication

for each contraction, a distributed layout is selected based on
internal performance models

performance model considers all possible execution paths

before contraction, tensors are redistributed to a new layout

if there is enough memory, the tensors are (partially) unpacked

all preserved symmetries and non-symmetric indices are folded
in preparation for matrix multiplication

nested distributed matrix multiply algorithms are used to
perform the contraction in a load-balanced manner
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Input via sparse tensor reads and writes

In CTF, tensors are defined on a communicator (subset or full set
of processors)

the data pointer is hidden from the user

the user can perform block-synchronous bulk writes and reads
of index-value pairs

to avoid communication, the user may read the current local
pairs

it is possible to perform overlapped writes (accumulate)

CTF internal implementation (all parts threaded):
1 bin keys by processor and redistribute
2 bin key by virtual processor and then sort them
3 iterate over the dense tensor, reading or writing keys along the

way
4 return keys to originating location if its a sparse read
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Blocked vs block-cyclic vs cyclic decompositions

Blocked layout Block-cyclic layout Cyclic layout

Red denotes padding / load imbalanceGreen denotes fill (unique values)
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Virtualization

Matrix multiply on 2x3 processor grid. Red lines represent
virtualized part of processor grid. Elements assigned to blocks by

cyclic phase.

X =

A
B

C
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3D tensor mapping
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The mapping process

Do in parallel over all physical topologies (foldings of the original
torus)

1 map longest physical torus dimension to longest tensor
dimension and repeat

2 select virtualization factors to preserve symmetry (as well as
to match the algorithmic requirements)

3 calculate the necessary memory usage and communication
cost of the algorithm

4 consider whether and what type of redistribution is necessary
for the mapping

5 select the best mapping based on a performance model
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Redistribution amongst different mappings

CTF must migrate tensors between different mappings between
operations as well as for slice()

the key idea is to use the fact that the global ordering of the
tensor values is preserved to avoid formation of explicit
key-value pairs

iterate over local sub-tensor in linear order and bin keys to
determine counts

iterate over local piece of old tensor in global order and place
keys into bins

MPI all-to-all-v

iterate over local piece of new tensor in global order and
retrieve keys from bins

kernel is threaded according to a global tensor partitioning
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Transposition of a tensor on a virtual processor grid

In some cases, it is necessary to change the assignment of the
tensor dimensions to virtual grid dimensions without changing the
virtual processor grid itself

in this case, CTF does not touch data within each block

redistributed by block instead

use MPI Isend and MPI Irecv for each sent and received block
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Local transposition

Once the data is redistributed into the new mapping, we fold the
tensors locally within blocks

turns all non-symmetric block contractions into matrix
multiplication

’preserved’ symmetries may be folded into one dimension, but
broken ones cannot

maps dimensions which have symmetry that cannot be folded
into matrix multiplication to have the longest stride
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Distributed contraction

Once the tensors are distributed accordingly, the contraction
algorithm begins

1 replicate small tensors over some processor grid dimensions
(2.5D/3D matrix multiplication algorithms)

2 nested distributed SUMMA (2D matrix multiplication
algorithm)

3 call to iterate over virtual blocks

4 call to iterate over broken symmetric dimensions

5 call to DGEMM
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Rewind

Cyclops Tensor Framework is available at
ctf.cs.berkeley.edu and github.com/solomonik/ctf

Latest version: v1.1 (March 2014), v1.0 was released in
December 2013, development started in June 2011

CCSD(T) and CCSDT(Q) methods in development
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