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Symmetry in tensor contractions

Consider a contraction from the CCSD method

Z ak̄
i c̄ =

∑
b

∑
j

T ab
ij · V

j k̄
bc̄

where T is partially antisymmetric

T ab
ij = −T ba

ij = −T ab
ji = T ba

ji

When the tensors have dimensions n × n × n × n, this contraction usually
requires 2n6 total operations (to leading order).

Despite the symmetry in T, no scalar multiplications are equivalent.
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Symmetric-matrix–vector multiplication

Consider symmetric n × n matrix A and vectors b, c

c = A · b is usually done by computing a nonsymmetric intermediate
matrix W,

Wij = Aij · bj ci =
n∑

j=1

Wij

which requires n2 multiplications and n2 additions

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = Aij · (bi + bj) ci =
n∑

j=1

Zij −
( n∑

j=1

Aij

)
· bi

which requires n2

2 multiplications and 5n2

2 additions
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Symmetrized rank-two outer product

Consider vectors a,b of dimension n

Symmetric matrix C = a · bT + b · aT is usually done by computing a
nonsymmetric intermediate matrix W,

Wij = ai · bj Cij = Wij + Wji

which requires n2 multiplications and n2/2 additions

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = (ai + aj) · (bi + bj) Cij = Zij − ai · bi − aj · bj

which requires n2

2 multiplications and 2n2 additions
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Symmetrized matrix multiplication

Consider symmetric n × n matrices A, B, and C

C = A · B + B · A is usually computed via a nonsymmetric
intermediate order 3 tensor W,

Wijk = Aik · Bkj W̄ij =
∑
k

Wijk Cij = Wij + Wji .

which requires n3 multiplications and n3 additions.

The symmetry preserving algorithm employs a symmetric intermediate
tensor Z using n3/6 multiplications and 7n3/6 additions,

Zijk = (Aij + Aik + Ajk) · (Bij + Bik + Bjk) vi =
n∑

k=1

Aik · Bik

Cij =
n∑

k=1

Zijk−n · Aij · Bij−vi−vj−
( n∑

k=1

Aik

)
· Bij−Aij ·

( n∑
k=1

Bik

)
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Symmetry preserving algorithm

Consider contraction of symmetric tensors A of order s + v and B of order
v + t that is symmetrized to produce a symmetric tensor C of order s + t

Let ω = s + t + v

Let Υ(s,t,v) be the nonsymmetric contraction algorithm

Let Ψ(s,t,v) be the direct evaluation algorithm

Let Φ(s,t,v) be the symmetry preserving algorithm

ω s t v FΥ FΨ FΦ application cases
2 1 1 0 n2 n2 n2/2 syr2, her2, (syr2k, her2k)
2 1 0 1 n2 n2 n2/2 symv, hemv, (symm, hemm)
3 1 1 1 n3 n3 n3/6 matrix (anti)commutator
s+t+v s t v nω

(
n
s

)(
n
t

)(
n
v

) (
n
ω

)
generally
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Antisymmetry and matrix powers

The symmetry preserving algorithm can compute

symmetrized products of two symmetric or two antisymmetric tensors

antisymmetrized products of a symmetric and an antisymmetric tensor

Hermitian tensor contractions

A2 for symmetric or antisymmetric A with n3/6 multiplications

A2 for nonsymmetric A (or A · B + B · A for nonsymmetric A, B)
with 2n3/3 products

that CCSD contraction

Z ak̄
i c̄ =

∑
b

∑
j

T ab
ij · V

j k̄
bc̄

in n6 operations (2X fewer) via Φ(1,0,1) ⊗Υ(1,2,1)
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Bilinear algorithms

A bilinear algorithm is defined by three matrices F(A), F(B), F(C)

Given input vectors a and b, it computes vector

c = F(C)[(F(A)Ta) ◦ (F(B)Tb)],

where ◦ is the Hadamard (pointwise) product

the number of columns in the three matrices is equal and is the
bilinear algorithm rank

the number of rows in each matrix corresponds to the number of
inputs (dimensions of a and b) and outputs (dimension of c)

matrix multiplication and symmetric tensor contraction correspond to
different bilinear algorithms (problems)

the bilinear rank is the number of multiplications, for the symmetry
preserving algorithm, it is

(n
ω

)
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Manipulation of bilinear algorithms

Given two bilinear algorithms:

Λ1 =(F
(A)
1 ,F

(B)
1 ,F

(C)
1 )

Λ2 =(F
(A)
2 ,F

(B)
2 ,F

(C)
2 )

Λ1 ⊗ Λ2 :=(F
(A)
1 ⊗ F

(A)
2 ,F

(B)
1 ⊗ F

(B)
2 ,F

(C)
1 ⊗ F

(C)
2 )

rank(Λ1 ⊗ Λ2) = rank(Λ1) · rank(Λ2)

Conversely given Λ = (F(A),F(B),F(C)), we say Λsub ⊆ Λ if there exists
projection matrix P such that

Λsub = (F(A)P,F(B)P,F(C)P)
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Expansion in bilinear algorithms

A bilinear algorithm Λ has expansion bound EΛ : N3 → N, if for all

Λsub := (F
(A)
sub,F

(B)
sub,F

(C)
sub) ⊆ Λ

we have

rank(Λsub) ≤ EΛ

(
rank(F

(A)
sub), rank(F

(B)
sub), rank(F

(C)
sub)

)
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Vertical communication in bilinear algorithms

Any schedule on a sequential machine with a cache of size H for
Λ = (F(A),F(B),F(C)) with expansion bound EΛ has vertical
communication cost

QΛ ≥ max

[
2 rank(Λ)H

Emax
Λ (H)

,#rows(F(A)) + #rows(F(B)) + #rows(F(C))

]
where Emax

Λ (H) := max
c(A),c(B),c(C)∈N,c(A)+c(B)+c(C)=3H

EΛ(c(A), c(B), c(C))
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Vertical communication in matrix multiplication

For the classical (non-Strassen-like) matrix multiplication algorithm of
m-by-k matrix A with k-by-n matrix B into m-by-n matrix C

EMM(c(A), c(B), c(C)) = (c(A)c(B)c(C))1/2

further, we have

Emax
MM (H) = max

c(A),c(B),c(C)∈N,c(A)+c(B)+c(C)≤3H
(c(A)c(B)c(C))1/2 = H3/2

so we obtain the expected bound

QMM ≥ max

[
2 rank(MM)H

Emax
MM (H)

,#rows(F(A)) + #rows(F(B)) + #rows(F(C))

]
= max

[
2mnk√

H
,mk + kn + mn

]
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Horizontal communication in bilinear algorithms

Any load balanced schedule on a parallel machine with p processes of
Λ = (F(A),F(B),F(C)) with expansion bound EΛ has horizontal
communication cost

WΛ ≥ d (A) + d (B) + d (C)

for some d (A), d (B), d (C) ∈ N such that

rank(Λ)/p ≤ EΛ(d (A) + #rows(F(A))/p,

d (B) + #rows(F(B))/p,

d (C) + #rows(F(C))/p)
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Horizontal communication in matrix multiplication

For the classical (non-Strassen-like) matrix multiplication algorithm of
m-by-k matrix A with k-by-n matrix B into m-by-n matrix C on a parallel
machine of p processors

WMM = Ω (WO(min(m, n, k),median(m, n, k),max(m, n, k), p))

where

WO(x , y , z , p) =


(
xyz
p

)2/3
: p > yz/x2

x
(
yz
p

)1/2
: yz/x2 ≥ p > z/y

xy : z/y ≥ p
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Communication lower bounds for direct evaluation of
symmetric contractions

An expansion bound on Ψ(s,t,v) is

E(s,t,v)
Ψ (d (A), d (B), d (C)) = q

(
d (A)d (B)d (C)

)1/2
,

where q =
[(s+v

s

)(v+t
v

)(s+t
s

)]1/2

Therefore, the same (asymptotically) horizontal and vertical
communication lower bounds apply for Ψ(s,t,v) as for a matrix
multiplication with dimensions ns × nt × nv
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Communication lower bounds for direct evaluation of
symmetric contractions

Another expansion bound on Ψ(s,t,0) (when v = 0) is

E(s,t,0)
Ψ (d (A), d (B), d (C)) =

((
ω

s

)
−1

)
d (C)+min

(
(d (A))ω/s , (d (B))ω/t , d (C)

)
There are also symmetric bounds when s = 0 or t = 0

When exactly one of s, t, v is zero, any load balanced schedule of Ψ(s,t,v)

on a parallel machine with p processors has horizontal communication cost

WΨ = Ω
(

(nω/p)max(s,t,v)/ω
)

This can be stronger than the corresponding matrix-multiplication-like
bound

WΨ = Ω
(

(nω/p)1/2
)
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Communication lower bounds for the symmetry preserving
algorithm

An expansion bound on Φ(s,t,v) is

E(s,t,v)
Φ (d (A), d (B), d (C)) = min

(((
ω

t

)
d (A)

) ω
s+v

,((
ω

s

)
d (B)

) ω
v+t

,((
ω

v

)
d (C)

) ω
s+t
)

This yields communication bounds with κ := max(s + v , v + t, s + t)

QΦ = Ω

(
nωH

Hω/κ
+ nκ

)
WΦ =

{
Ω
(
(nω/p)κ/ω

)
: s, t, v > 0

Ω
(
(nω/p)max(s,t,v)/ω

)
: κ = ω
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Communication lower bounds for nested algorithms

Conjecture: if bilinear algorithms λ1 and λ2 have expansion bounds E1 and
E2, then λ1 ⊗ λ2 has expansion bound E12(c(A), c(B), c(C))

= max
c

(A)
1 ,c

(B)
1 ,c

(C)
1 ,c

(A)
2 ,c

(B)
2 ,c

(C)
2 ∈N

c
(A)
1 c

(A)
2 =c(A),c

(B)
1 c

(B)
2 =c(B),c

(C)
1 c

(C)
2 =c(C)

[
E1(c

(A)
1 , c

(B)
1 , c

(C)
1 )E2(c

(A)
2 , c

(B)
2 , c

(C)
2 )

]

Simpler conjecture: consider matrices A and B, such that for some
α, β ∈ [0, 1] and any k ∈ N

any subset of k columns of A has rank at least kα

any subset of k columns of B has rank at least kβ

then any subset of k ∈ N columns of A⊗ B has rank at least kmin(α,β)

The first conjecture would provide lower bounds for the nested algorithms
we wish to use for partially-symmetric coupled-cluster contractions
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Dependencies between bilinear forms

Consider the Gaussian elimination algorithm computing A = LU

it must compute the bilinear algorithm corresponding the matrix
multiplication LU

therefore, it has the same bilinear expansion bound and
communication lower bounds as matrix multiplication

but not all bilinear forms may be computed simultaneously

a dependency DAG may be defined where the vertices are the bilinear
forms

this DAG defines a partial ordering on the bilinear forms
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Dependency interval analysis

Consider a bilinear algorithm that computes a set of bilinear forms V with
a partial ordering, we denote a dependency interval between a, b ∈ V as

[a, b] = {a, b} ∪ {c : a < c < b, c ∈ V }

If there exists {v1, . . . , vn} ∈ V with vi < vi+1 and |[vi+1, vi+k ]| = kd for
all k ∈ N, then

F · Sd−1 = Ω(nd)

where F is the computation cost and S is the synchronization cost

Further, if the algorithm has bilinear expansion E , satisfying

Emax(H) = H
d

d−1 , then

W · Sd−2 = Ω(nd−1)
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What just happened?

Idea goes back to Papadimitriou and Ullman, 1987
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Synchronization lower bounds as tradeoffs

For triangular solve with an n × n matrix

FTRSV · STRSV = Ω
(
n2
)

For Cholesky of an n × n matrix

FCHOL · S2
CHOL = Ω

(
n3
)

WCHOL · SCHOL = Ω
(
n2
)

For computing s applications of a (2m + 1)d -point stencil

FSt · Sd
St = Ω

(
m2d · sd+1

)
WSt · Sd−1

St = Ω
(
md · sd

)
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What about memory bandwidth cost?

Its possible to lower memory bandwidth cost by H1/d without asymptotic
increase in horizontal communication cost
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Conclusion

exploiting symmetry raises communication cost

dense matrix factorizations cannot scale

iterative solvers also cannot scale

but there are also some good news...

Happy Birthday Jim!
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Self-references

For more information see

ES and James Demmel; Contracting symmetric tensors using fewer
multiplications

ES, James Demmel, and Torsten Hoefler; Communication lower
bounds for tensor contraction algorithms

ES, Erin Carson, Nicholas Knight, and James Demmel; Tradeoffs
between synchronization, communication, and work in parallel linear
algebra computations
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Backup slides
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Symmetry preserving algorithm vs Strassen’s algorithm
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Symmetry preserving alg. vs Strassen’s alg. (s=t=v=ω/3)

Strassen’s algorithm
Sym. preserving ω=6
Sym. preserving ω=3
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