
Communication-avoiding parallel algorithms 1/ 49

Communication-avoiding parallel algorithms for
dense linear algebra

Edgar Solomonik

Department of EECS, UC Berkeley

June 2013

Communication-avoiding parallel algorithms 2/ 49

Outline

1 Introduction
Why communication matters

2 2.5D algorithms
Matrix multiplication
LU factorization
QR factorization and the symmetric eigenproblem

3 Communication lower bounds
Latency trade-off lower bounds

4 Tensor Contractions
Coupled Cluster theory
Cyclops Tensor Framework

5 Conclusions

Communication-avoiding parallel algorithms 3/ 49

Introduction

Why communication matters

Communication costs more than computation

Communication happens off-chip and on-chip and incurs two costs

latency - time per message

bandwidth - amount of data per unit time

These costs are becoming more expensive relative to flops

Table: Annual improvements

time per flop bandwidth latency

59% network 26% 15%

DRAM 23% 5%

Source: James Demmel [FOSC]

Communication-avoiding parallel algorithms 4/ 49

Introduction

Why communication matters

Topology-aware collective communication

 128

 256

 512

 1024

 2048

 4096

 8192

8 64 512 4096

B
an

dw
id

th
 (M

B
/s

ec
)

#nodes

1 MB multicast on BG/P, Cray XT5, and Cray XE6

BG/P
XE6
XT5

Communication-avoiding parallel algorithms 5/ 49

2.5D algorithms

Matrix multiplication

Blocking matrix multiplication

A

B
A

B

A

B

A
B

Communication-avoiding parallel algorithms 6/ 49

2.5D algorithms

Matrix multiplication

2D matrix multiplication

[Cannon 69],
[Van De Geijn and Watts 97],

[Agarwal et al 95]

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

16 CPUs (4x4)

O(n3/p) flops

O(n2/
√

p) words moved

O(
√

p) messages

O(n2/p) bytes of memory

Communication-avoiding parallel algorithms 7/ 49

2.5D algorithms

Matrix multiplication

3D matrix multiplication

[Agarwal et al 95],
[Aggarwal, Chandra, and Snir 90],

[Bernsten 89], [McColl and Tiskin 99]

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

64 CPUs (4x4x4)

4 copies of matrices

O(n3/p) flops

O(n2/p2/3) words moved

O(1) messages

O(n2/p2/3) bytes of memory

Communication-avoiding parallel algorithms 8/ 49

2.5D algorithms

Matrix multiplication

2.5D matrix multiplication

[McColl and Tiskin 99]
[Solomonik and Demmel 11]

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

32 CPUs (4x4x2)

2 copies of matrices

O(n3/p) flops

O(n2/
√

c · p) words moved

O(
√

p/c3) messages

O(c · n2/p) bytes of memory

Communication-avoiding parallel algorithms 9/ 49

2.5D algorithms

Matrix multiplication

Strong scaling matrix multiplication

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D SUMMA
2D SUMMA

ScaLAPACK PDGEMM

Communication-avoiding parallel algorithms 10/ 49

2.5D algorithms

Matrix multiplication

Topology-aware mapping on BG/Q

 0

 50

 100

 150

 200

256 512 1024 2048 4096

G
ig

af
lo

p/
s/

no
de

#nodes

Matrix multiplication factorization strong scaling on Mira (BG/Q), n=65,536

2D MM, custom mapping
2D MM, default mapping

Communication-avoiding parallel algorithms 11/ 49

2.5D algorithms

Matrix multiplication

Benefit of replication on BG/Q

 0

 50

 100

 150

 200

256 512 1024 2048 4096

G
ig

af
lo

p/
s/

no
de

#nodes

Matrix multiplication strong scaling on Mira (BG/Q)

2.5D MM n=65,536
2D MM n=65,536

2.5D MM n=16,384
2D MM n=16,384

Communication-avoiding parallel algorithms 12/ 49

2.5D algorithms

LU factorization

2D blocked LU factorization

A

Communication-avoiding parallel algorithms 12/ 49

2.5D algorithms

LU factorization

2D blocked LU factorization

L₀₀

U₀₀

Communication-avoiding parallel algorithms 12/ 49

2.5D algorithms

LU factorization

2D blocked LU factorization

L

U

Communication-avoiding parallel algorithms 12/ 49

2.5D algorithms

LU factorization

2D blocked LU factorization

L

U

S=A-LU

Communication-avoiding parallel algorithms 12/ 49

2.5D algorithms

LU factorization

2D block-cyclic decomposition

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

Communication-avoiding parallel algorithms 12/ 49

2.5D algorithms

LU factorization

2D block-cyclic LU factorization

Communication-avoiding parallel algorithms 12/ 49

2.5D algorithms

LU factorization

2D block-cyclic LU factorization

L

U

Communication-avoiding parallel algorithms 12/ 49

2.5D algorithms

LU factorization

2D block-cyclic LU factorization

L

U

S=A-LU

Communication-avoiding parallel algorithms 13/ 49

2.5D algorithms

LU factorization

3D recursive non-pivoted LU and Cholesky

A 3D recursive algorithm with no pivoting [A. Tiskin 2002]

Tiskin gives algorithm under the BSP model

Bulk Synchronous Parallel
considers communication and synchronization

We give an alternative distributed-memory version and
implementation

Also, we have a new lower-bound for the latency cost

Communication-avoiding parallel algorithms 14/ 49

2.5D algorithms

LU factorization

2.5D LU factorization

L₀₀

U₀₀

U₀₃

U₀₃

U₀₁

L₂₀
L₃₀

L₁₀

(A)

U₀₀

U₀₀

L₀₀

L₀₀

U₀₀

L₀₀

Communication-avoiding parallel algorithms 14/ 49

2.5D algorithms

LU factorization

2.5D LU factorization

L₀₀

U₀₀

U₀₃

U₀₃

U₀₁

L₂₀
L₃₀

L₁₀

(A)

(B)

U₀₀

U₀₀

L₀₀

L₀₀

U₀₀

L₀₀

Communication-avoiding parallel algorithms 14/ 49

2.5D algorithms

LU factorization

2.5D LU factorization

L₀₀

U₀₀

U₀₃

U₀₃

U₀₁

L₂₀
L₃₀

L₁₀

(A)

(B)

U

L

(C)
(D)

U₀₀

U₀₀

L₀₀

L₀₀

U₀₀

L₀₀

Communication-avoiding parallel algorithms 15/ 49

2.5D algorithms

LU factorization

2.5D LU strong scaling (without pivoting)

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

LU without pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU

Communication-avoiding parallel algorithms 16/ 49

2.5D algorithms

LU factorization

Topology-aware mapping on BG/Q

 0

 20

 40

 60

 80

 100

256 512 1024 2048 4096

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Mira (BG/Q), n=65,536

2D LU, custom mapping
2D LU, default mapping

Communication-avoiding parallel algorithms 17/ 49

2.5D algorithms

LU factorization

Hybrid 2.5D LU factorization

 100

 150

 200

 250

 300

 350

 400

 450

16 32 64 128 256

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Stampede (MIC + Sandy Bridge)

2.5D hybrid LU n=131,072
2D hybrid LU n=131,072

2.5D pure-cpu LU n=131,072
2.5D hybrid LU n=65,536

2D hybrid LU n=65,536
2.5D pure-cpu LU n=65,536

Communication-avoiding parallel algorithms 18/ 49

2.5D algorithms

LU factorization

2.5D LU with pivoting

A = P · L · U, where P is a permutation matrix

2.5D generic pairwise elimination (neighbor/pairwise pivoting
or Givens rotations (QR)) [A. Tiskin 2007]

pairwise pivoting does not produce an explicit L
pairwise pivoting may have stability issues for large matrices

Our approach uses tournament pivoting, which is more stable
than pairwise pivoting and gives L explicitly

pass up rows of A instead of U to avoid error accumulation

Communication-avoiding parallel algorithms 19/ 49

2.5D algorithms

LU factorization

Tournament pivoting

Partial pivoting is not communication-optimal on a blocked matrix

requires message/synchronization for each column

O(n) messages needed

Tournament pivoting is communication-optimal

performs a tournament to determine best pivot row candidates

passes up ’best rows’ of A

Communication-avoiding parallel algorithms 20/ 49

2.5D algorithms

LU factorization

2.5D LU factorization with tournament pivoting

PA₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

PA₀

Communication-avoiding parallel algorithms 20/ 49

2.5D algorithms

LU factorization

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

PA₀

Communication-avoiding parallel algorithms 20/ 49

2.5D algorithms

LU factorization

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

L
U

L
U

L U

L
U

L
₂₀

L
₃₀

L
₄₀

U
pdate

Update

Update

Update

Update

U
pdate

U
pdate

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

L₁₀

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

PA₀

Communication-avoiding parallel algorithms 20/ 49

2.5D algorithms

LU factorization

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

L
U

L
U

L U

L
U

L
₂₀

L
₃₀

L
₄₀

U
pdate

Update

Update

Update

Update

U
pdate

U
pdate

L₀₀
U₀₀

U₀₁

U₀₂

U₀₃

L₃₀

L₁₀
L₂₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

L₁₀

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀ L₀₀
U₀₀

L₀₀
U₀₀

L₀₀
U₀₀

PA₀

Communication-avoiding parallel algorithms 21/ 49

2.5D algorithms

LU factorization

2.5D LU on 65,536 cores

 0

 20

 40

 60

 80

 100

NO-pivot 2D

NO-pivot 2.5D

CA-pivot 2D

CA-pivot 2.5D

Ti
m

e
(s

ec
)

LU on 16,384 nodes of BG/P (n=131,072)

2X faster

2X faster

compute
idle

communication

Communication-avoiding parallel algorithms 22/ 49

2.5D algorithms

QR factorization and the symmetric eigenproblem

3D QR factorization

A = Q · R where Q is orthogonal R is upper-triangular

3D QR using Givens rotations (generic pairwise elimination) is
given by [A. Tiskin 2007]

Tiskin minimizes latency and bandwidth by working on
slanted panels

3D QR cannot be done with right-looking updates as 2.5D LU
due to non-commutativity of orthogonalization updates

Communication-avoiding parallel algorithms 23/ 49

2.5D algorithms

QR factorization and the symmetric eigenproblem

2.5D QR factorization

The orthogonalization updates (I − 2yyT) do not commute so
aggregate them into (I − YTY)T .

To minimize latency perform recursive TSQR on the panel

Must reconstruct Householder Y from TSQR Q,R

Communication-avoiding parallel algorithms 24/ 49

2.5D algorithms

QR factorization and the symmetric eigenproblem

Householder reconstruction

Yamamoto’s algorithm

Given A = QR for tall-skinny A,

perform LU on (Q1− I) to get LU([Q1− I ,Q2]) = Y · (TY T).

as stable as QR in practice

Communication-avoiding parallel algorithms 25/ 49

2.5D algorithms

QR factorization and the symmetric eigenproblem

3D QR using YT representation

Communication-avoiding parallel algorithms 26/ 49

2.5D algorithms

QR factorization and the symmetric eigenproblem

Symmetric eigensolve via QR

Need to apply two sided updates to reduce to tridiagonal T

T = (I − YTY T)A(I − YTTY T)

V = AYTT − 1

2
YTY TAYTT

T = A− YV T − VY T

We use TSQR to compute panels of Y and reduce A to banded
form.

Communication-avoiding parallel algorithms 27/ 49

2.5D algorithms

QR factorization and the symmetric eigenproblem

2.5D symmetric eigensolve

Algorithm outline

Compute TSQR on each subpanel Ai = Qi · Ri to reduce A to
band size n/

√
pc

Recover Yi from Qi and Ai via Yamamoto’s method

Accumulate Y = [Y1,Y2 . . .Yi] on processor layers and apply
in parallel to next panel Ai+1

Reduce from banded to tridiagonal using symmetric band
reduction with

√
pc processors

Use MRRR to compute eigenvalues of the tridiagonal matrix

Communication-avoiding parallel algorithms 28/ 49

2.5D algorithms

QR factorization and the symmetric eigenproblem

Summary of theoretical results for 2.5D algorithms

A comparison between asymptotic communication cost in
ScaLAPACK (SCL) and in 2.5D algorithms (log(p) factors
suppressed). All matrices are n-by-n. For 2.5D algorithms,
c ∈ [1, p1/3]

problem lower bound 2.5D lat 2.5D bw SCL lat SCL bw

MM W = Ω(n2/p2/3)
√

p/c3 n2/
√

pc
√

p n2/
√

p

TRSM W · S2 = Ω(n2)
√

p/
√

c n2/
√

pc
√

p n2/
√

p
Cholesky W · S = Ω(n2)

√
pc n2/

√
pc

√
p n2/

√
p

LU W · S = Ω(n2)
√

pc n2/
√

pc n n2/
√

p
QR W · S = Ω(n2)

√
pc n2/

√
pc n n2/

√
p

sym eig W · S = Ω(n2)
√

pc n2/
√

pc n n2/
√

p

Communication-avoiding parallel algorithms 29/ 49

Communication lower bounds

Latency trade-off lower bounds

Dependency bubble

Q: Why must we sacrifice latency to lower bandwidth cost in
LU/Cholesky?
A: graph expansion!

Definition (Dependency bubble)

We consider the expansion of dependencies associated with a path
R = {v1, . . . vn}, where each vi , for i ∈ [2, n] is dependent on vi−1.
We define the dependency bubble around P as B(R) ⊂ V where
each vertex ui ∈ B(R) lays on a dependency path, {w , . . . ui . . . z}
in G where w , z ∈ R. This bubble corresponds to vertices which
must be computed between the computations of v1 and vn (the
start and end of the path).

Communication-avoiding parallel algorithms 30/ 49

Communication lower bounds

Latency trade-off lower bounds

Dependency bubble expansion

Recall that a balanced vertex separator Q of a graph G = (V ,E),
splits V − Q = W1 + W2 so that min(|W1|, |W2|) ≥ 1

4 |V | and
E = W1 × (Q + W1) + W2 × (Q + W2).

Definition (Dependency bubble cross-section expansion)

If B(R) is the dependency bubble formed around path R, the
bubble cross-section expansion, E (R) is the minimum size of a
balanced vertex separator of B(R).

Communication-avoiding parallel algorithms 31/ 49

Communication lower bounds

Latency trade-off lower bounds

General latency lower-bound based on bubble expansion

Theorem (Bubble Expansion Theorem)

Let P be a dependency path in G , such that any subsequence
R ⊂ P, has bubble cross-section expansion E (R) = Ω(ε(|R|)) and
bubble size |B(R)| = Ω(σ(|R|)), where ε(b) = bd1 , and σ(b) = bd2

for positive integers d1, d2 The bandwidth and latency costs of any
parallelization of G must obey the relations

F = Ω(σ(b) · |P|/b), W = Ω(ε(b) · |P|/b), S = Ω(|P|/b)

for all b ∈ [1, |P|].

Communication-avoiding parallel algorithms 32/ 49

Communication lower bounds

Latency trade-off lower bounds

Dependency bubble expansion along path

Communication-avoiding parallel algorithms 33/ 49

Communication lower bounds

Latency trade-off lower bounds

Solution to triangular system of linear equations (TRSV)

Consider solving for x where L is lower-triangular in

yi =
n∑
j≤i

lij · xj .

Define vertices corresponding to computations as vij = (lij , yi) in
addition to input vertices corresponding to elements of L and y .

Theorem (Latency-bandwidth Trade-off in TRSV)

The parallel computation of x in y = L · x where L is a
lower-triangular n-by-n matrix, incurs latency cost S and
bandwidth cost W ,

W · S2 = Ω(n2)

Communication-avoiding parallel algorithms 34/ 49

Communication lower bounds

Latency trade-off lower bounds

TRSV dependency hypergraph

Communication-avoiding parallel algorithms 35/ 49

Communication lower bounds

Latency trade-off lower bounds

Cholesky factorization

We can use bubble expansion to prove better latency lower bounds
for LU, as well as Cholesky, and QR factorizations.

Theorem (Latency-bandwidth Trade-off in Cholesky Factorization)

The parallel computation of lower-triangular L for symmetric
positive definite A such that A = LLT where all matrices are
n-by-n, must incur flops cost F , latency cost S, and bandwidth
cost W , such that

W · S = Ω(n2) and F · S2 = Ω(n3)

Communication-avoiding parallel algorithms 36/ 49

Communication lower bounds

Latency trade-off lower bounds

Cholesky computational structure

Communication-avoiding parallel algorithms 37/ 49

Communication lower bounds

Latency trade-off lower bounds

Cholesky dependency hypergraph

Communication-avoiding parallel algorithms 38/ 49

Communication lower bounds

Latency trade-off lower bounds

Krylov subspace methods

Definition (Krylov subspace methods)

Compute Akx , where A typically corresponds to a sparse graph.

Theorem

To compute Akx, where A corresponds to a 3d -point stencil, the
bandwidth W and latency S costs are lower-bounded by

F = Ω(k · bd), W = Ω(k · bd−1), S = Ω(k/b),

for any b. We can rewrite these relations as

W · Sd−1 = Ω(kd), F · Sd = Ω(kd+1).

Communication-avoiding parallel algorithms 39/ 49

Tensor Contractions

Coupled Cluster theory

Electronic structure theory

Electronic structure calculations attempt to model the
ground-state (and sometimes excited-state) energies of chemical
systems, taking into account of quantum effects.
Density Functional Theory is the most common method

cost is typically O(n3) for n electrons

models system as a density functional, corrects for correlation

good for metals and regular systems

bad at molecules due to correlation effects on boundary

Coupled Cluster models electronic correlation explicitly

cost is typically O(n4+d), where d ∈ {2, 4, 6}
the most accurate method used in practice

Communication-avoiding parallel algorithms 40/ 49

Tensor Contractions

Coupled Cluster theory

Coupled Cluster definition

Coupled Cluster (CC) is a method for computing an approximate
solution to the time-independent Schrödinger equation of the form

H|Ψ〉 = E |Ψ〉,

CC rewrites the wave-function |Ψ〉 as an excitation operator T̂
applied to the Slater determinant |Φ0〉

|Ψ〉 = eT̂|Φ0〉

where T̂ is as a sum of T̂n (the n’th excitation operators)

T̂CCSD = T̂1 + T̂2

T̂CCSDT = T̂1 + T̂2 + T̂3

T̂CCSDTQ = T̂1 + T̂2 + T̂3 + T̂4

Communication-avoiding parallel algorithms 41/ 49

Tensor Contractions

Coupled Cluster theory

Coupled Cluster with Double excitations (CCD) equations

eT̂2 |Φ0〉 turns into:

Rab
ij = V ab

ij + P(ia, jb)

[
T ae
ij I be − T ab

im Imj +
1

2
V ab
ef T ef

ij +

1

2
T ab
mnImn

ij − T ae
mj I

mb
ie − Ima

ie T eb
mj + (2T ea

mi − T ea
im)Imb

ej

]

I ab = (−2V mn
eb + V mn

be)T ea
mn

I ij = (2V mi
ef − V im

ef)T ef
mj

I ijkl = V ij
kl + V ij

ef T ef
kl

I iajb = V ia
jb −

1

2
V im
eb T ea

jm

I iabj = V ia
bj + V im

be (T ea
mj −

1

2
T ae
mj)−

1

2
V mi
be T ae

mj

Communication-avoiding parallel algorithms 42/ 49

Tensor Contractions

Cyclops Tensor Framework

NWChem approach to contractions

A high-level description of NWChem’s algorithm for tensor
contractions:

data layout is abstracted away by the Global Arrays framework

Global Arrays uses one-sided communication for data
movement

packed tensors are stored in blocks

for each contraction, each process does a subset of the block
contractions

each block is transposed and unpacked prior to contraction

dynamic load balancing is employed among processors

Communication-avoiding parallel algorithms 43/ 49

Tensor Contractions

Cyclops Tensor Framework

Cyclops Tensor Framework (CTF) approach to contractions

A high-level description of CTF’s algorithm for tensor contractions:

packed tensors are decomposed cyclically among toroidal
processor grids

MPI collectives are used for all communication

for each contraction, a distributed layout is selected based on
internal performance models

performance model considers all possible execution paths

before contraction, tensors are redistributed to a new layout

if there is enough memory, the tensors are (partially) unpacked

all preserved symmetries and non-symmetric indices are folded
in preparation for matrix multiplication

nested distributed matrix multiply algorithms are used to
perform the contraction in a load-balanced manner

Communication-avoiding parallel algorithms 44/ 49

Tensor Contractions

Cyclops Tensor Framework

CCSD code using our domain specific language

Communication-avoiding parallel algorithms 45/ 49

Tensor Contractions

Cyclops Tensor Framework

Comparison with NWChem on Cray XE6

CCSD iteration time on 64 nodes of Hopper:

system # electrons # orbitals CTF NWChem

w5 25 205 14 sec 36 sec

w7 35 287 90 sec 178 sec

w9 45 369 127 sec -

w12 60 492 336 sec -

On 128 nodes, NWChem completed w9 in 223 sec, CTF in 73 sec.

Communication-avoiding parallel algorithms 46/ 49

Tensor Contractions

Cyclops Tensor Framework

Blue Gene/Q up to 1250 orbitals, 250 electrons

 100

 200

 300

 400

 500

 600

8192 16384 32768 65536 131072

Te
ra

flo
p/

s

#cores

CCSD weak scaling on Mira (BG/Q)

Aquarius/CTF

Communication-avoiding parallel algorithms 47/ 49

Tensor Contractions

Cyclops Tensor Framework

Coupled Cluster efficiency on Blue Gene/Q

 0

 0.2

 0.4

 0.6

 0.8

 1

8192 16384 32768 65536 131072

Fr
ac

tio
n

of
 p

ea
k

flo
ps

#cores

CCSD weak scaling on Mira (BG/Q)

Aquarius/CTF

Communication-avoiding parallel algorithms 48/ 49

Conclusions

Summary and conclusion

Communication cost and load balance matter, especially in
parallel

We can lower bound bandwidth based on projections and
latency based on dependencies and graph expansion

2.5D algorithms present a communication-optimal algorithm
family for dense linear algebra

2.5D matrix multiplication and LU factorization work well in
practice

CTF is a parallel framework for symmetric tensor contractions

Communication-avoiding parallel algorithms 49/ 49

Conclusions

Acknowledgements

Collaborators:

James Demmel (adviser)
Grey Ballard (2.5D QR, 2.5D TRSM, 2.5D sym eig)
Erin Carson, Nick Knight (latency lower bounds)
Evangelos Georganas (2.5D with overlap, 1.5D MD)
Katherine Yelick, Michael Driscoll, Penporn Koanantakool
(1.5D MD)
(INRIA) Mathias Jacquelin, Laura Grigori (2.5D QR)
Hong-Diep Nguyen (2.5D QR)
(LBNL) Aydın Buluç (2.5D all-pairs shortest-paths)
(UT Austin) Devin Matthews (CTF)
(Argonne) Jeff Hammond (CTF)

funding and support

DOE Computational Science Graduate Fellowship (CSGF)
access to Argonne, NERSC, LLNL, and TACC resources

Communication-avoiding parallel algorithms 50/ 49

Backup slides

Communication-avoiding parallel algorithms 51/ 49

Comparison with ScaLAPACK on BG/Q

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

4096 8192 16384 32768 65536 131072 262144

Te
ra

flo
p/

s

#cores

BG/Q matrix multiplication

CTF
Scalapack

Communication-avoiding parallel algorithms 52/ 49

Communication lower bound for tensor contractions

The computational graph corresponding to a tensor contraction
can be higher dimensional, but there are still only three projections
corresponding to A, B, and C. So, if the contraction necessitates
F floating point operations, the bandwidth lower bound is still just

Wp = Ω

(
F

p ·
√

M

)
.

Therefore. folding contractions into matrix multiplication and
running a good multiplication algorithm is communication-optimal.

Communication-avoiding parallel algorithms 53/ 49

Cyclic decomposition in CTF

Cyclical distribution is fundamental to CTF, hence the name
Cyclops (cyclic-operations).
Given a vector v of length n on p processors

in a blocked distribution process pi owns
{vi ·n/p+1, . . . v(i+1)·n/p}
in a cyclic distribution process pi owns {vi , v2i , . . . v(n/p)i}

A cyclic distribution is associated with a phase along each
dimension (for the vector above this was p). The main advantage
from this distribution is that each subtensor can retain packed
structure with only minimal padding.
CTF assumes all subtensor symmetries have index relations of the
form ≤ and not <, so in effect, diagonals are stored for
skew-symmetric tensors.

Communication-avoiding parallel algorithms 54/ 49

Sequential tensor contractions

A cyclic distribution provides a vital level of abstraction, because
each subtensor contraction becomes a packed contraction of the
same sort as the global tensor contraction but of smaller size.
Given a sequential packed contraction kernel, CTF can parallelize
it automatically. Further, because each subcontraction is the same,
the workload of each processor is the same. The actual sequential
kernel used by CTF employs the following steps

1 if there is enough memory, unpack broken symmetries

2 perform a nonsymmetric transpose, to make all indices of
non-broken symmetry be the leading dimensions

3 use a naive kernel to iterate though indices with broken
symmetry and call BLAS GEMM for the leading dimensions

Communication-avoiding parallel algorithms 55/ 49

Blocked vs block-cyclic vs cyclic decompositions

Blocked layout Block-cyclic layout Cyclic layout

Red denotes padding / load imbalanceGreen denotes fill (unique values)

Communication-avoiding parallel algorithms 56/ 49

Virtualization

Matrix multiply on 2x3 processor grid. Red lines represent
virtualized part of processor grid. Elements assigned to blocks by

cyclic phase.

X =

A
B

C

Communication-avoiding parallel algorithms 57/ 49

3D tensor mapping

Communication-avoiding parallel algorithms 58/ 49

A simple data layout

Replicated, distributed nonsymmetric tensor (processor grid)
of nonsymmetric tensors (virtual grid)

of symmetric tensors (folded broken symmetries)
of matrices (unfolded broken and folded preserved symmetries)

The layout typically changes for each tensor between each
contraction.

Communication-avoiding parallel algorithms 59/ 49

Tensor redistribution

Our symmetric tensor data layout has a global ordering and a local
ordering

the local data is not in global order

cannot compute local data index from global index

cannot compute global data index from local index

can iterate over local data and obtain global index

can iterate over global data and obtain local index

Given these constraints, it is simplest to compute the global index
of each piece of data and sort.

Communication-avoiding parallel algorithms 60/ 49

General data redistribution

We use an algorithm faster than sorting for redistribution

1 iterate over the local data and count where the data must be
sent

2 communicate counts and compute prefix sums to obtain
offsets

3 iterate over the local data in global order and bin it

4 exchange the data (MPI all to all v)

5 iterate over the new local data in global order and retrieve it
from bins

This method is much faster, because it does not explicitly form
and communicate keys for the data.

Communication-avoiding parallel algorithms 61/ 49

Threaded general redistribution

In order to hide memory latency and reduce integer operations it is
imperative to thread the redistribution kernel

prefix sums and counts are trivial to thread

to thread the iterator over data, we must give each thread
different global indices

each thread moves the local data corresponding to a global
index partition, preserving the ordering

Communication-avoiding parallel algorithms 62/ 49

Interface and code organization

the CTF codebase is currently 31,345 lines of C++ code

CTF provides functionality for general tensor contractions,
including a contraction domain-specific language (DSL)

Aquarius is a quantum chemistry package being developed by
Devin Matthews

uses CTF for parallel tensor contraction execution
provides a DSL for spin-integrated tensor contractions
gives implementations of CC methods including other
necessary components (e.g. SCF)

efforts are underway to also integrate CTF into the QChem
package

Communication-avoiding parallel algorithms 63/ 49

Multidimensional processor grids

CTF supports tensors and processor grids of any dimension
because mapping a symmetric tensor to a processor grid of the
same dimension preserves symmetric structure with minimal
virtualization and padding. Processor grids are defined by

a base grid, obtained from the physical topology or from
factorizing the number of processors

folding all possible combinations of adjacent processor grid
dimensions

Tensors are contracted on higher dimensional processor grids by

mapping an index shared by two tensors in the contraction to
different processor grid dimensions

running a distributed matrix multiplication algorithm for each
such ’mismatched’ index

replicating data along some processor dimensions ’a la 2.5D’

Communication-avoiding parallel algorithms 64/ 49

Density Functional Theory

Density Function Theory (DFT)

DFT uses the fact that the ground-state wave-function Ψ0 is a
unique functional of the particle density n(~r)

Ψ0 = Ψ[n0]

Since Ĥ = T̂ + V̂ + Û, where T̂ , V̂ , and Û, are the kinetic,
potential, and interaction contributions respectively,

E [n0] = 〈Ψ[n0]|T̂ [n0] + V̂ [n0] + Û[n0]|Ψ[n0]〉

DFT assumes Û = 0, and solves the Kohn-Sham equations[
− ~2

2m
∇2 + Vs(~r)

]
φi (~r) = εiφi (~r)

where Vs has a exchange-correlation potential correction,

Vs(~r) = V (~r) +

∫
e2ns(~r ′)

|~r − ~r ′|
d3r ′ + VXC [ns(~r)]

Communication-avoiding parallel algorithms 65/ 49

Density Functional Theory

Density Function Theory (DFT), contd.

The exchange-correlation potential VXC is approximated by DFT,
by a functional which is often system-dependent. This allows the
following iterative scheme

1 Given an (initial guess) n(~r) calculate Vs via Hartree-Fock
and functional

2 Solve (diagonalize) the Kohn-Sham equation to obtain each φi

3 Compute a new guess at n(~r) based on φi

Due to the rough approximation of correlation and exchange DFT
is good for weakly-correlated systems (which appear in solid-state
physics), but suboptimal for strongly-correlated systems.

Communication-avoiding parallel algorithms 66/ 49

Density Functional Theory

Linear algebra in DFT

DFT requires a few core numerical linear algebra kernels

Matrix multiplication (of rectangular matrices)

Linear equations solver

Symmetric eigensolver (diagonalization)

We proceed to study schemes for optimization of these algorithms.

Communication-avoiding parallel algorithms 67/ 49

Density Functional Theory

2.5D algorithms for DFT

2.5D matrix multiplication is integrated into QBox.

QBox is a DFT code developed by Erik Draeger et al.

Depending on system/functional can spend as much as 80%
time in MM

Running on most of Sequoia and getting significant speed up
from 3D

1.75X speed-up on 8192 nodes 1792 gold atoms, 31
electrons/atom

Eventually hope to build and integrate a 3D eigensolver into
QBox

Communication-avoiding parallel algorithms 68/ 49

Coupled Cluster formalism

Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

τ abij = tabij +
1

2
Pa
bP i

j t
a
i tbj ,

F̃m
e = f m

e +
∑
fn

vmn
ef t fn ,

F̃ a
e = (1− δae)f a

e −
∑
m

F̃m
e tam −

1

2

∑
mnf

vmn
ef tafmn +

∑
fn

van
ef t fn ,

F̃m
i = (1− δmi)f m

i +
∑
e

F̃m
e tei +

1

2

∑
nef

vmn
ef tefin +

∑
fn

vmn
if t fn ,

Communication-avoiding parallel algorithms 69/ 49

Coupled Cluster formalism

Our CCSD factorization

W̃ mn
ei = vmn

ei +
∑
f

vmn
ef t fi ,

W̃ mn
ij = vmn

ij + P i
j

∑
e

vmn
ie tej +

1

2

∑
ef

vmn
ef τ

ef
ij ,

W̃ am
ie = vam

ie −
∑
n

W̃ mn
ei tan +

∑
f

vma
ef t fi +

1

2

∑
nf

vmn
ef tafin ,

W̃ am
ij = vam

ij + P i
j

∑
e

vam
ie tej +

1

2

∑
ef

vam
ef τ

ef
ij ,

za
i = f a

i −
∑
m

F̃m
i tam +

∑
e

f a
e tei +

∑
em

vma
ei tem +

∑
em

vae
im F̃m

e +
1

2

∑
efm

vam
ef τ

ef
im −

1

2

∑
emn

W̃ mn
ei teamn,

zab
ij = vab

ij + P i
j

∑
e

vab
ie tej + Pa

bP i
j

∑
me

W̃ am
ie tebmj − Pa

b

∑
m

W̃ am
ij tbm + Pa

b

∑
e

F̃ a
e tebij − P i

j

∑
m

F̃m
i tabmj +

1

2

∑
ef

vab
ef τ

ef
ij +

1

2

∑
mn

W̃ mn
ij τ abmn,

Communication-avoiding parallel algorithms 70/ 49

Coupled Cluster formalism

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and
1000 orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
nv -orbitals, no-electrons, p-processors, M-local memory size

kernel % of time complexity architectural bounds

DGEMM 45% O(n4
vn2

o/p) flops/mem bandwidth

broadcasts 20% O(n4
vn2

o/p
√

M) multicast bandwidth

prefix sum 10% O(p) allreduce bandwidth

data packing 7% O(n2
vn2

o/p) integer ops

all-to-all-v 7% O(n2
vn2

o/p) bisection bandwidth

tensor folding 4% O(n2
vn2

o/p) memory bandwidth

Communication-avoiding parallel algorithms 71/ 49

Coupled Cluster formalism

Performance breakdown on Cray XE6

Performance data for a CCSD iteration with 100 electrons and 500
orbitals on 256 nodes of Hopper
4 processes per node, 6 threads per process
Total time: 9 mins
v -orbitals, o-electrons

kernel % of time complexity architectural bounds

DGEMM 21% ⇓ 24% O(v 4o2/p) flops/mem bandwidth

broadcasts 32% ⇑ 12% O(v 4o2/p
√

M) multicast bandwidth

prefix sum 7% ⇓ 3% O(p) allreduce bandwidth

data packing 10% ⇑ 3% O(v 2o2/p) integer ops

all-to-all-v 8% O(v 2o2/p) bisection bandwidth

tensor folding 4% O(v 2o2/p) memory bandwidth

	Introduction
	Why communication matters

	2.5D algorithms
	Matrix multiplication
	LU factorization
	QR factorization and the symmetric eigenproblem

	Communication lower bounds
	Latency trade-off lower bounds

	Tensor Contractions
	Coupled Cluster theory
	Cyclops Tensor Framework

	Conclusions
	Appendix
	Density Functional Theory
	Coupled Cluster formalism

