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Pervasive paradigms in scientific computing

What commonalities exist among resource-intensive computations
in simulation and data analysis?

I multidimensional datasets (observations, discretizations)

I higher-order relations between datasets, i.e. equations, maps,
graphs, hypergraphs

I sparsity and symmetry in structure of relations

I relations lead to solution directly or by acting as an evolutionary
(iterative) criterion

I algebraic descriptions of datasets and relations
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Pervasive paradigms in scientific computing

What type of abstractions are desirable in high performance
computing?

I data abstractions should reflect native dimensionality and
structure

I global functional abstractions should efficiently orchestrate
communication and synchronization

I abstractions should enable development of provably efficient
algorithms
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Outline

Introduction to tensor computations

Symmetry-preserving tensor algorithms

Communication-avoiding parallel algorithms

A massively-parallel tensor framework

Applications to electronic structure calculations

Conclusion
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Basic data (vector) parallelism
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Basic data (vector) parallelism

ci = f (ai )
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Basic data (vector) parallelism

ci = f (ai )
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Dense matrix operators

c = Ab
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Sparse matrix operators

c = Ab
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Sparse matrix operators

ci =
∑
j

Aijbj
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Low-rank matrix factorizations

A = UV → c = UVb
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Low-rank matrix factorizations

Aij =
∑
k

UikVkj → ci =
∑
j ,k

UikVkjbj

Edgar Solomonik Algorithms as Multilinear Tensor Equations 9/40



Low-rank matrix factorizations

c = UΣVb
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Tensor operator

di =
∑
j ,k

Aijkbjck
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Tensor operator

di =
∑
j ,k

Aijkbjck
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Low-rank tensor factorizations (CP)

Aijk =
∑
l

UilVjlWkl → di =
∑
j ,k,l

UilVjlWklbjck
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Low-rank tensor factorizations (Tucker)

Aijk =
∑
l ,m,n

TlmnUilV
jmW kn → di =

∑
j ,k,l ,m,n

TlmnUilVjmWjnbjck
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Low-rank tensor factorizations (Tucker)

Ajk
i =

∑
l ,m,n

TlmnUilVjmWkn → di =
∑

j ,k,l ,m,n

TlmnUilVjmWknbjck
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Low-rank tensor factorizations (TT)

Aijk =
∑
l ,m

UilVljmWmk →
∑

j ,k,l ,m

UilVljmWmkbjck
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Low-rank tensor factorizations (TT)
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Tensor contractions in electronic structure methods

Amplitude equation snippet from coupled cluster doubles model

0 = Vabij +
∑
k

TabikFkj +
∑

k,l ,m,n

TabklVklmnTmnij + . . .

Tensor hypercontraction representationa

Tabij =
∑
l ,m

ψalφjlZlmφjmψbm

a
Hohenstein, Parrish, Sherrill, Martinez, JCP, 2012
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Structured tensor computations

Challenges for matrix/tensor algebraic abstractions

I data and relation sparsity → tensor sparsity

I low-order representations of data → tensor decompositions

I implicitly defined relations → implicit tensor representations

I data and relation equivalences → tensor symmetries
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Exploiting symmetry in tensors

Tensor symmetry (e.g. Aij = Aji ) reduces memory and cost
I for order d tensor, d! less memory
I dot product

∑
i ,j AijBij = 2

∑
i<j AijBij +

∑
i AiiBii

I matrix-vector multiplication1

ci =
∑
j

Aijbj =
∑
j

Aij(bi + bj)−
(∑

j

Aij

)
bi

I rank-2 vector outer product1

Cij = aibj + ajbi = (ai + aj)(bi + bj)− aibi − ajbj

I squaring a symmetric matrix (or AB + BA)1

Cij =
∑
k

AikAkj =
∑
k

(Aik + Akj + Aij)
2 − . . .

I for order ω contraction, ω! fewer multiplications 1

1
S., Demmel; Technical Report, ETH Zurich, 2015.
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Symmetry preserving algorithms

By exploiting symmetry, we can reduce the number of
multiplications at the cost of more additions2

I partially symmetric contractions
I symmetry preserving algorithm can be nested over each index group
I reduction in multiplications implies reduction in nested calls
I cost reductions: 1.3 for CCSD, 2.1 for CCSDT

I algorithms generalize to most antisymmetric tensor contractions
I for Hermitian tensors, multiplication cost 3X more than addition
I BLAS routines: hemm and her2k as well as LAPACK routines like

hetrd (tridiagonal reduction) may be done with 25% fewer operations

I achieves (2/3)n3 bilinear rank for squaring a nonsymmetric
matrix, assuming elementwise commutativity

I allows blocking of symmetric contractions into smaller
(anti)symmetric contractions

2
S., Demmel; Technical Report, ETH Zurich, 2015.
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Beyond computation cost

Algorithms should be not only work-efficient but
communication-efficient

I data movement and synchronization cost more energy than flops

I two types of data movement: vertical (intranode memory–cache)
and horizontal (internode network transfers)

I parallel algorithm design involves tradeoffs between computation,
communication, and synchronization

I lower bounds and parameterized algorithms provide optimal
solutions within a well-defined tuning space
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Cost model for parallel algorithms

Given a schedule that specifies all work and communication tasks
on p processors, we consider the following costs, accumulated
along chains of tasks (as in α− β, BSP, and LogGP models),

I F – computation cost

I Q – vertical communication cost

I W – horizontal communication cost

I S – synchronization cost
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Communication lower bounds: previous work

Multiplication of n × n matrices

I horizontal communication lower bound3 WMM = Ω
(

n2

p2/3

)
I memory-dependent horizontal communication lower bound4

WMM = Ω
(

n3

p
√
M

)
I with M = cn2/p memory, can hope to obtain W = O(n2/

√
cp)

communication

I standard parallel libraries (ScaLAPACK, Elemental) optimal only
for c = 1

3
Aggarwal, Chandra, Snir, TCS, 1990

4
Irony, Toledo, Tiskin, JPDC, 2004
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Communication-efficient matrix multiplication

Communication-optimal algorithms for matrix multiplication have
been studied extensively5

They continue to be attractive on modern architectures6
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5
Berntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar,

IBM, 1995; McColl, Tiskin, Algorithmica, 1999; ...
6

S., Bhatele, Demmel, SC, 2011
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Synchronization cost lower bounds

Unlike matrix multiplication, many algorithms in numerical linear
algebra have polynomial depth

I synchronization cost bounds7 SMM = Θ
(

n3

pM3/2

)
I algorithms for Cholesky, LU, QR, SVD have additional

dependencies

I lowering computation and communication costs, requires
additional synchronization

7
Ballard, Demmel, Holtz, Schwartz, SIAM JMAA, 2011
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Tradeoffs in the diamond DAG

For the n × n diamond DAG, there is a tradeoff between
computation and synchronization costs8 F · S = Ω(n2)

We generalize such tradeoffs to consider horizontal communication
and arbitrary (polynomial or exponential) interval expansion9

8
Papadimitriou, Ullman, SIAM JC, 1987

9
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms,
represented via dependency hypergraphs.a

For triangular solve with an n × n matrix

FTRSV · STRSV = Ω
(
n2
)

For Cholesky of an n × n matrix

FCHOL · S2
CHOL = Ω

(
n3
)

WCHOL · SCHOL = Ω
(
n2
)

Proof employs classical Loomis-Whitney inequality.

For any R ⊂ N× N× N, three projections of R onto N× N have
total size at least |R|2/3

a
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Communication-efficient LU factorization

For any c ∈ [1, p1/3], use cn2/p memory per processor and obtain

WLU = O(n2/
√
cp), SLU = O(

√
cp)
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I first implementation of a communication-optimal LU algorithm

10
Tiskin, FGCS, 2007

11
S., Demmel, Euro-Par, 2011
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Communication-efficient QR factorization

I WQR = O(n2/
√
cp),SQR = O(

√
cp) using Givens rotations12

I Householder form can be reconstructed quickly from TSQR13

I optimal QR communication and synchronization (modulo log
factors) costs can be obtained with Householder representation14

I Householder aggregation yields performance improvements
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Tiskin, FGCS, 2007

13
Ballard, Demmel, Grigori, Jacquelin, Nguyen, Diep, S., IPDPS, 2014

14
S., UCB, 2014
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Communication-efficient eigenvalue computation

For the dense symmetric matrix eigenvalue problem

I WSE = O(n2/
√
cp),SQR = O(

√
cp log2 p) 15

I optimal horizontal communication can be obtained with
left-looking algorithm and aggregation, however, requires more
vertical communication

I successive band reduction can be used to minimize both
communication costs

15
S., UCB, 2014. S., Hoefler, Demmel, in preparation
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Synchronization tradeoffs in stencils

Our lower bound analysis extends also to sparse iterative
methods.16

For computing s applications of a (2m + 1)d -point stencil

FSt · Sd
St = Ω

(
m2d · sd+1

)
WSt · Sd−1

St = Ω
(
md · sd

)
proof requires generalization of Loomis-Whitney inequality to order
d set and order d − 1 projections

I time-blocking lowers synchronization and vertical communication
costs, but raises horizontal communication

I we suggest alternative approach that minimizes vertical and
horizontal communication, but not synchronization

16
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Beyond the Loomis-Whitney inequalities

Loomis-Whitney inequalities are not sufficient for all computations

I symmetry preserving tensor contraction algorithms have arbitrary
order projections from order d set

I bilinear algorithms17 provide a more general framework

I a bilinear algorithm is defined by matrices F (A),F (B),F (C),

c = F (C)[(F (A)Ta) ◦ (F (B)Tb)]

where ◦ is the Hadamard (pointwise) product

I communication lower bounds can be formulated in terms of rank18

17
Pan, Springer, 1984

18
S., Hoefler, Demmel, in preparation
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Communication cost of symmetry preserving algorithms

For contraction of order s + v tensor with order v + t tensor

I Υ is the nonsymmetric contraction algorithm

I Ψ is the best previously known algorithm

I Φ is the symmetry preserving algorithm

Asymptotic communication lower bounds based on bilinear
expansiona (H–cache size, p–#processors, n–dimension):
s t v FΥ FΨ FΦ QΥ,Ψ QΦ WΥ WΨ WΦ

1 1 0 n2 n2 n2

2 n2 n2 n
p1/2

n
p1/2

n
p1/2

2 1 0 n3 n3

2
n3

6 n3 n3 n n2

p2/3
n2

p2/3

2 2 0 n4 n4

4
n4

24 n4 n4 n2

p1/2
n2

p1/2
n2

p1/2

1 1 1 n3 n3 n3

6
n3

H1/2
n3

H1/2
n2

p2/3
n2

p2/3
n2

p2/3

2 1 1 n4 n4

2
n4

24
n4

H1/2
n4

H1/3 n2 n2 n3

p3/4

2 2 2 n6 n6

8
n6

720
n6

H1/2
n6

H1/2
n4

p2/3
n4

p2/3
n4

p2/3

a
S., Hoefler, Demmel, ETHZ, 2014
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Open theoretical problems

I lower bounds for multiplication of a sparse and a dense matrix

I lower bounds for nested bilinear algorithms

I broader parameterizations of algorithmic representations needed
for QR and SVD lower bounds
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Tensor algebra as a programming abstraction

Cyclops Tensor Framework19

I contraction/summation/functions of tensors

I distributed symmetric-packed/sparse storage via cyclic layout

I parallelization via MPI+OpenMP(+CUDA)

19
S., Hammond, Demmel, UCB, 2011. S., Matthews, Hammond, Demmel, IPDPS, 2013
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Tensor algebra as a programming abstraction

Cyclops Tensor Framework

I contraction/summation/functions of tensors

I distributed symmetric-packed/sparse storage via cyclic layout

I parallelization via MPI+OpenMP(+CUDA)

Jacobi iteration example code snippet

void Jacobi(Matrix <> A, Vector <> b, int n){
Matrix <> R(A);
R["ii"] = 0.0;
Vector <> x(n), d(n), r(n);
Function <> inv ([]( double & d){ return 1./d; });
d["i"] = inv(A["ii"]); // set d to inverse of diagonal of A
do {

x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual

} while (r.norm2 () > 1.E-6); // check for convergence
}
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Tensor algebra as a programming abstraction

Cyclops Tensor Framework

I contraction/summation/functions of tensors

I distributed symmetric-packed/sparse storage via cyclic layout

I parallelization via MPI+OpenMP(+CUDA)

Møller-Plesset perturbation theory (MP3) code snippet

Z["abij"] += Fab["af"]*T["fbij"];
Z["abij"] -= Fij["ni"]*T["abnj"];
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];
Z["abij"] -= Vaibj["amei"]*T["ebmj"];
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Betweenness centrality

Betweenness centrality code snippet, for k of n nodes

void btwn_central(Matrix <int > A, Matrix <path > P, int n, int k){
Monoid <path > mon(...,

[]( path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

}, ...);

Matrix <path > Q(n,k,mon); // shortest path matrix
Q["ij"] = P["ij"];

Function <int ,path > append ([]( int w, path p){
return path(w+p.w, p.m);

}; );

for (int i=0; i<n; i++)
Q["ij"] = append(A["ik"],Q["kj"]);

...
}
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Performance of CTF for dense computations

CTF is highly tuned for massively-parallel machines

I virtualized multidimensional processor grids

I topology-aware mapping and collective communication

I performance-model-driven decomposition done at runtime

I optimized redistribution kernels for tensor transposition
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Performance of CTF for sparse computations

MP3 leveraging sparse-dense tensor contractionsa
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Post-Hartree-Fock (HF) methods

Accurate models of electronic correlation require approximation of
contributions of excited-state transitions.

I Møller-Plesset methods provide perturbative corrections

I Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) iteratively
solve (2nd, 3rd, 4th) order equations in the state space

I tensor expressions naturally express high-order transitions
I tensor structure admits symmetries and sparsity
I permutational index antisymmetry due to antisymmetry of

wavefunction
I sparsity due to strength of interactions diminishing with growing

distance in the molecular orbital basis
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CCSD using CTF

Extracted from Aquarius (Devin Matthews’ code,
https://github.com/devinamatthews/aquarius)

FMI["mi"] += 0.5*WMNEF["mnef"]*T(2)["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T(2)["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T(2)["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T(2)["afin"];

Z(2)["abij"] = WMNEF["ijab"];
Z(2)["abij"] += FAE["af"]*T(2)["fbij"];
Z(2)["abij"] -= FMI["ni"]*T(2)["abnj"];
Z(2)["abij"] += 0.5*WABEF["abef"]*T(2)["efij"];
Z(2)["abij"] += 0.5*WMNIJ["mnij"]*T(2)["abmn"];
Z(2)["abij"] -= WAMEI["amei"]*T(2)["ebmj"];

Other electronic structure codes using CTF include QChem (via
Libtensor) and VASP
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Comparison with NWChem

NWChem is the most commonly-used distributed-memory
quantum chemistry method suite

I provides CCSD and CCSDT

I uses Global Arrays a Partitioned Global Address Space (PGAS)
backend for tensor contractions

I derives equations via Tensor Contraction Engine (TCE)
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Coupled cluster on IBM BlueGene/Q and Cray XC30

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZa
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Future work

I symmetry preserving algorithms
I high-performance implementations
I bilinear algorithm complexity – fast matrix multiplication

I sparsity in tensor computations
I handling multiple sparse operands and sparse output
I worst-case lower bounds and efficient algorithms

I tensor algorithms
I most algorithms correspond to multiple dependent tensors operations
I scheduling, blocking, and decomposition of multiple tensor operations
I programming abstractions for tensor factorizations

I application-driven development
I tensor decompositions, sparsity, symmetry all motivated by electronic

structure applications
I many further applications in tensor networks (DMRG), machine

learning, etc.
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Backup slides
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Symmetry preserving algorithm vs Strassen’s algorithm
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Nesting of bilinear algorithms

Given two bilinear algorithms:

Λ1 =(F
(A)
1 ,F

(B)
1 ,F

(C)
1 )

Λ2 =(F
(A)
2 ,F

(B)
2 ,F

(C)
2 )

We can nest them by computing their tensor product

Λ1 ⊗ Λ2 :=(F
(A)
1 ⊗ F

(A)
2 ,F

(B)
1 ⊗ F

(B)
2 ,F

(C)
1 ⊗ F

(C)
2 )

rank(Λ1 ⊗ Λ2) = rank(Λ1) · rank(Λ2)
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Block-cyclic algorithm for s-step methods

For s-steps of a (2m + 1)d -point stencil with block-size of H1/d/m,

WKr = O

(
msnd

H1/dp

)
SKr = O(snd/(pH)) QKr = O

(
msnd

H1/dp

)
which are good when H = Θ(nd/p), so the algorithm is useful
when the cache size is a bit smaller than nd/p
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2.5D LU on MIC
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Topology-aware mapping on BG/Q
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Symmetric matrix representation
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Blocked distributions of a symmetric matrix
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Cyclic distribution of a symmetric matrix
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Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss
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Our CCSD factorization
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Stability of symmetry preserving algorithms
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Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and
1000 orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
v -orbitals, o-electrons

kernel % of time complexity architectural bounds

DGEMM 45% O(v4o2/p) flops/mem bandwidth

broadcasts 20% O(v4o2/p
√
M) multicast bandwidth

prefix sum 10% O(p) allreduce bandwidth

data packing 7% O(v2o2/p) integer ops

all-to-all-v 7% O(v2o2/p) bisection bandwidth

tensor folding 4% O(v2o2/p) memory bandwidth

Edgar Solomonik Algorithms as Multilinear Tensor Equations 53/40



Tiskin’s path doubling algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations.
We can partition each Ak by path size (number of edges)

Ak = I⊕ Ak(1)⊕ Ak(2)⊕ . . .⊕ Ak(k)

where each Ak(l) contains the shortest paths of up to k ≥ l edges,
which have exactly l edges. We can see that

Al(l) ≤ Al+1(l) ≤ . . . ≤ An(l) = A∗(l),

in particular A∗(l) corresponds to a sparse subset of Al(l).
The algorithm works by picking l ∈ [k/2, k] and computing

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

which finds all paths of size up to 3k/2 by taking all paths of size
exactly l ≥ k/2 followed by all paths of size up to k .
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