Algorithms as Multilinear Tensor Equations

Edgar Solomonik

Department of Computer Science ETH Zurich

Georgia Institute of Technology, Atlanta GA, USA

February 18, 2016

Pervasive paradigms in scientific computing

What commonalities exist among resource-intensive computations in simulation and data analysis?

- multidimensional datasets (observations, discretizations)
- higher-order relations between datasets, i.e. equations, maps, graphs, hypergraphs
- sparsity and symmetry in structure of relations
- relations lead to solution directly or by acting as an evolutionary (iterative) criterion
- algebraic descriptions of datasets and relations

Pervasive paradigms in scientific computing

What type of abstractions are desirable in high performance computing?

- data abstractions should reflect native dimensionality and structure
- global functional abstractions should efficiently orchestrate communication and synchronization
- abstractions should enable development of provably efficient algorithms

Introduction to tensor computations

Symmetry-preserving tensor algorithms

Communication-avoiding parallel algorithms

A massively-parallel tensor framework

Applications to electronic structure calculations

Conclusion

Basic data (vector) parallelism

Basic data (vector) parallelism

$$c_i = f(a_i)$$

Basic data (vector) parallelism

$$c_i = f(a_i)$$

 $\mathbf{c} = \mathbf{A}\mathbf{b}$

 $\mathbf{c} = \mathbf{A}\mathbf{b}$

Sparse matrix operators

Low-rank matrix factorizations

$${\sf A}={\sf UV}$$
 $ightarrow$ ${\sf c}={\sf UVb}$

Low-rank matrix factorizations

$$A_{ij} = \sum_k U_{ik} V_{kj} \quad o \quad c_i = \sum_{j,k} U_{ik} V_{kj} b_j$$

Low-rank matrix factorizations

 $\mathbf{c} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V} \mathbf{b}$

low rank linear operator

Tensor operator

$$d_i = \sum_{j,k} A_{ijk} b_j c_k$$

multilinear operator

Tensor operator

$$d_i = \sum_{j,k} A_{ijk} b_j c_k$$

multilinear operator

Low-rank tensor factorizations (CP)

Low-rank tensor factorizations (CP)

Low-rank tensor factorizations (Tucker)

Low-rank tensor factorizations (Tucker)

Low-rank tensor factorizations (TT)

Low-rank tensor factorizations (TT)

Edgar Solomonik

Tensor contractions in electronic structure methods

Amplitude equation snippet from coupled cluster doubles model

$$0 = V_{abij} + \sum_{k} T_{abik} F_{kj} + \sum_{k,l,m,n} T_{abkl} V_{klmn} T_{mnij} + \dots$$

$$0 = V + T + T + \dots$$

Tensor hypercontraction representation^a

^aHohenstein, Parrish, Sherrill, Martinez, JCP, 2012

Structured tensor computations

Challenges for matrix/tensor algebraic abstractions

- data and relation sparsity \rightarrow tensor sparsity
- \blacktriangleright low-order representations of data \rightarrow tensor decompositions
- \blacktriangleright implicitly defined relations \rightarrow implicit tensor representations
- \blacktriangleright data and relation equivalences \rightarrow tensor symmetries

Exploiting symmetry in tensors

Tensor symmetry (e.g. $A_{ij} = A_{ji}$) reduces memory and cost

- ▶ for order *d* tensor, *d*! less memory
- dot product $\sum_{i,j} A_{ij} B_{ij} = 2 \sum_{i < j} A_{ij} B_{ij} + \sum_i A_{ii} B_{ii}$
- matrix-vector multiplication¹

$$c_i = \sum_j A_{ij}b_j = \sum_j A_{ij}(b_i + b_j) - \left(\sum_j A_{ij}\right)b_i$$

rank-2 vector outer product¹

$$C_{ij} = a_i b_j + a_j b_i = (a_i + a_j)(b_i + b_j) - a_i b_i - a_j b_j$$

• squaring a symmetric matrix (or AB + BA)¹

$$C_{ij} = \sum_{k} A_{ik}A_{kj} = \sum_{k} (A_{ik} + A_{kj} + A_{ij})^2 - \dots$$

• for order ω contraction, ω ! fewer multiplications ¹

¹S., Demmel; Technical Report, ETH Zurich, 2015.

By exploiting symmetry, we can reduce the number of multiplications at the cost of more additions $^2\,$

- partially symmetric contractions
 - symmetry preserving algorithm can be nested over each index group
 - reduction in multiplications implies reduction in nested calls
 - cost reductions: 1.3 for CCSD, 2.1 for CCSDT
- algorithms generalize to most antisymmetric tensor contractions
- ▶ for Hermitian tensors, multiplication cost 3X more than addition
 - BLAS routines: hemm and her2k as well as LAPACK routines like hetrd (tridiagonal reduction) may be done with 25% fewer operations
- ► achieves (2/3)n³ bilinear rank for squaring a nonsymmetric matrix, assuming elementwise commutativity
- allows blocking of symmetric contractions into smaller (anti)symmetric contractions

²S., Demmel; Technical Report, ETH Zurich, 2015.

Algorithms should be not only work-efficient but communication-efficient

- data movement and synchronization cost more energy than flops
- two types of data movement: vertical (intranode memory-cache) and horizontal (internode network transfers)
- parallel algorithm design involves tradeoffs between computation, communication, and synchronization
- lower bounds and parameterized algorithms provide optimal solutions within a well-defined tuning space

Given a schedule that specifies all work and communication tasks on p processors, we consider the following costs, accumulated along chains of tasks (as in $\alpha - \beta$, BSP, and LogGP models),

- ► F computation cost
- Q vertical communication cost
- W horizontal communication cost
- ► S synchronization cost

Communication lower bounds: previous work

Multiplication of $n \times n$ matrices

- ► horizontal communication lower bound³ $W_{MM} = \Omega\left(\frac{n^2}{p^{2/3}}\right)$
- memory-dependent horizontal communication lower bound⁴ $W_{MM} = \Omega\left(\frac{n^3}{p\sqrt{M}}\right)$
- with $M = cn^2/p$ memory, can hope to obtain $W = O(n^2/\sqrt{cp})$ communication
- standard parallel libraries (ScaLAPACK, Elemental) optimal only for c = 1

³Aggarwal, Chandra, Snir, TCS, 1990

⁴Irony, Toledo, Tiskin, JPDC, 2004

Communication-efficient matrix multiplication

Communication-optimal algorithms for matrix multiplication have been studied extensively $^{\rm 5}$

They continue to be attractive on modern architectures⁶

Edgar Solomonik

⁵ Berntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar, IBM, 1995; McColl, Tiskin, Algorithmica, 1999; ...

⁶S., Bhatele, Demmel, SC, 2011

Synchronization cost lower bounds

Unlike matrix multiplication, many algorithms in numerical linear algebra have polynomial depth

- synchronization cost bounds⁷ $S_{MM} = \Theta\left(\frac{n^3}{pM^{3/2}}\right)$
- algorithms for Cholesky, LU, QR, SVD have additional dependencies
- lowering computation and communication costs, requires additional synchronization

⁷Ballard, Demmel, Holtz, Schwartz, SIAM JMAA, 2011

Tradeoffs in the diamond DAG

For the $n \times n$ diamond DAG, there is a tradeoff between computation and synchronization costs⁸ $F \cdot S = \Omega(n^2)$

We generalize such tradeoffs to consider horizontal communication and arbitrary (polynomial or exponential) interval expansion⁹

⁸Papadimitriou, Ullman, SIAM JC, 1987

⁹S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

We apply tradeoff lower bounds to dense linear algebra algorithms, represented via dependency hypergraphs.^a

For triangular solve with an $n \times n$ matrix

$$F_{\text{TRSV}} \cdot S_{\text{TRSV}} = \Omega\left(n^2\right)$$

For Cholesky of an $n \times n$ matrix

$$F_{CHOL} \cdot S_{CHOL}^2 = \Omega(n^3)$$
 $W_{CHOL} \cdot S_{CHOL} = \Omega(n^2)$

Proof employs classical Loomis-Whitney inequality.

For any $R \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, three projections of R onto $\mathbb{N} \times \mathbb{N}$ have total size at least $|R|^{2/3}$

^aS., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Communication-efficient LU factorization

For any $c \in [1, p^{1/3}]$, use cn^2/p memory per processor and obtain

$$W_{\rm LU} = O(n^2/\sqrt{cp}), \qquad S_{\rm LU} = O(\sqrt{cp})$$

- LU with pairwise pivoting¹⁰ extended to tournament pivoting¹¹
- first implementation of a communication-optimal LU algorithm

Edgar Solomonik

¹⁰Tiskin, FGCS, 2007

¹¹S., Demmel, Euro-Par, 2011

Communication-efficient QR factorization

- $W_{\rm QR} = O(n^2/\sqrt{cp}), S_{\rm QR} = O(\sqrt{cp})$ using Givens rotations¹²
- Householder form can be reconstructed quickly from TSQR¹³
- optimal QR communication and synchronization (modulo log factors) costs can be obtained with Householder representation¹⁴
- Householder aggregation yields performance improvements

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

¹²Tiskin, FGCS, 2007

 $^{13}\mathsf{Ballard},$ Demmel, Grigori, Jacquelin, Nguyen, Diep, S., IPDPS, 2014

¹⁴S., UCB, 2014

Edgar Solomonik

Algorithms as Multilinear Tensor Equations

26/40

Communication-efficient eigenvalue computation

For the dense symmetric matrix eigenvalue problem

•
$$W_{\text{SE}} = O(n^2/\sqrt{cp}), S_{\text{QR}} = O(\sqrt{cp}\log^2 p)^{15}$$

- optimal horizontal communication can be obtained with left-looking algorithm and aggregation, however, requires more vertical communication
- successive band reduction can be used to minimize both communication costs

¹⁵S., UCB, 2014. S., Hoefler, Demmel, in preparation

Synchronization tradeoffs in stencils

Our lower bound analysis extends also to sparse iterative methods. $^{\rm 16}$

For computing s applications of a $(2m+1)^d$ -point stencil

$$F_{\mathsf{St}} \cdot S^d_{\mathsf{St}} = \Omega\left(m^{2d} \cdot s^{d+1}\right) \qquad W_{\mathsf{St}} \cdot S^{d-1}_{\mathsf{St}} = \Omega\left(m^d \cdot s^d\right)$$

proof requires generalization of Loomis-Whitney inequality to order d set and order d-1 projections

- time-blocking lowers synchronization and vertical communication costs, but raises horizontal communication
- we suggest alternative approach that minimizes vertical and horizontal communication, but not synchronization

¹⁶S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Beyond the Loomis-Whitney inequalities

Loomis-Whitney inequalities are not sufficient for all computations

- symmetry preserving tensor contraction algorithms have arbitrary order projections from order d set
- ► bilinear algorithms¹⁷ provide a more general framework
- ▶ a bilinear algorithm is defined by matrices $F^{(A)}, F^{(B)}, F^{(C)},$

$$c = F^{(C)}[(F^{(A)\mathsf{T}}a) \circ (F^{(B)\mathsf{T}}b)]$$

where \circ is the Hadamard (pointwise) product

 $\begin{bmatrix} \mathbf{C} \end{bmatrix} = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \end{bmatrix} \circ \begin{pmatrix} \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{b} \\ \mathbf{b} \end{bmatrix} \end{bmatrix}$

<u>communication lower bounds can be formulated in terms of rank¹⁸</u>

- ¹⁷Pan, Springer, 1984
- ¹⁸S., Hoefler, Demmel, in preparation

Edgar Solomonik

Communication cost of symmetry preserving algorithms

For contraction of order s + v tensor with order v + t tensor

- \blacktriangleright Υ is the nonsymmetric contraction algorithm
- Ψ is the best previously known algorithm
- Φ is the symmetry preserving algorithm

Asymptotic communication lower bounds based on bilinear expansion^a (*H*-cache size, p-#processors, *n*-dimension):

5	t	V	Fγ	Fψ	Fφ	$Q_{\Upsilon,\Psi}$	Qφ	Wγ	W_{Ψ}	Ŵφ
1	1	0	n ²	n ²	$\frac{n^2}{2}$	n ²	<i>n</i> ²	$\frac{n}{p^{1/2}}$	$\frac{n}{p^{1/2}}$	$\frac{n}{p^{1/2}}$
2	1	0	n ³	$\frac{n^3}{2}$	$\frac{n^3}{6}$	n ³	n ³	n	$\frac{n^2}{p^{2/3}}$	$\frac{n^2}{p^{2/3}}$
2	2	0	n ⁴	$\frac{n^4}{4}$	$\frac{n^4}{24}$	n ⁴	n ⁴	$\frac{n^2}{p^{1/2}}$	$\frac{n^2}{p^{1/2}}$	$\frac{n^2}{p^{1/2}}$
1	1	1	n ³	n ³	$\frac{n^3}{6}$	$\frac{n^3}{H^{1/2}}$	$\frac{n^3}{H^{1/2}}$	$\frac{n^2}{p^{2/3}}$	$\frac{n^2}{p^{2/3}}$	$\frac{n^2}{p^{2/3}}$
2	1	1	n ⁴	$\frac{n^4}{2}$	$\frac{n^4}{24}$	$\frac{n^4}{H^{1/2}}$	$\frac{n^4}{H^{1/3}}$	n ²	n ²	$\frac{n^3}{p^{3/4}}$
2	2	2	n ⁶	$\frac{n^6}{8}$	$\frac{n^6}{720}$	$\frac{n^6}{H^{1/2}}$	$\frac{n^6}{H^{1/2}}$	$\frac{n^4}{p^{2/3}}$	$\frac{n^4}{p^{2/3}}$	$\frac{n^4}{p^{2/3}}$

^aS., Hoefler, Demmel, ETHZ, 2014

Open theoretical problems

- Iower bounds for multiplication of a sparse and a dense matrix
- lower bounds for nested bilinear algorithms
- broader parameterizations of algorithmic representations needed for QR and SVD lower bounds

Tensor algebra as a programming abstraction

Cyclops Tensor Framework¹⁹

- contraction/summation/functions of tensors
- distributed symmetric-packed/sparse storage via cyclic layout
- ► parallelization via MPI+OpenMP(+CUDA)

¹⁹S., Hammond, Demmel, UCB, 2011. S., Matthews, Hammond, Demmel, IPDPS, 2013

Tensor algebra as a programming abstraction

Cyclops Tensor Framework

- contraction/summation/functions of tensors
- distributed symmetric-packed/sparse storage via cyclic layout
- parallelization via MPI+OpenMP(+CUDA)

Jacobi iteration example code snippet

```
void Jacobi(Matrix<> A, Vector<> b, int n){
   Matrix<> R(A);
   R["ii"] = 0.0;
   Vector<> x(n), d(n), r(n);
   Function<> inv([](double & d){ return 1./d; });
   d["i"] = inv(A["ii"]); // set d to inverse of diagonal of A
   do {
      x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
      r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual
   } while (r.norm2() > 1.E-6); // check for convergence
}
```

Tensor algebra as a programming abstraction

Cyclops Tensor Framework

- contraction/summation/functions of tensors
- distributed symmetric-packed/sparse storage via cyclic layout
- parallelization via MPI+OpenMP(+CUDA)

Møller-Plesset perturbation theory (MP3) code snippet

```
Z["abij"] += Fab["af"]*T["fbij"];
Z["abij"] -= Fij["ni"]*T["abnj"];
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];
Z["abij"] -= Vaibj["amei"]*T["ebmj"];
```

```
Betweenness centrality code snippet, for k of n nodes
void btwn_central(Matrix<int> A, Matrix<path> P, int n, int k)
  Monoid < path > mon(...,
                    [](path a, path b){
                      if (a.w<b.w) return a;
                      else if (b.w<a.w) return b;</pre>
                      else return path(a.w, a.m+b.m);
                    }, ...);
  Matrix<path> Q(n,k,mon); // shortest path matrix
 Q["ij"] = P["ij"];
  Function<int,path> append([](int w, path p){
                         return path(w+p.w, p.m);
                      }; );
  for (int i=0; i<n; i++)</pre>
    Q["ij"] = append(A["ik"],Q["kj"]);
  . . .
3
```

Performance of CTF for dense computations

CTF is highly tuned for massively-parallel machines

- virtualized multidimensional processor grids
- topology-aware mapping and collective communication
- performance-model-driven decomposition done at runtime
- optimized redistribution kernels for tensor transposition

Performance of CTF for sparse computations

All-pairs shortest-paths based on path doubling with sparsification

Edgar Solomonik

Algorithms as Multilinear Tensor Equations

Post-Hartree-Fock (HF) methods

Accurate models of electronic correlation require approximation of contributions of excited-state transitions.

- Møller-Plesset methods provide perturbative corrections
- Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) iteratively solve (2nd, 3rd, 4th) order equations in the state space $0 = \sqrt[a]{i} \sqrt{\frac{j}{p}} + \sqrt[a]{i} \sqrt{\frac{j}{p}} + \sqrt[a]{i} \sqrt{\frac{j}{p}} + \sqrt[a]{n} \sqrt{\frac{j}{p}} + \sqrt[a]{n} \sqrt{\frac{j}{p}} + \sqrt[a]{n} \sqrt{\frac{j}{p}} + \sqrt[a]{n} \sqrt{\frac{j}{p}} + \frac{\sqrt{a}}{n} \sqrt{\frac{j}{p}} \sqrt{\frac{j}{p}} + \frac{\sqrt{a}}{n} \sqrt{\frac{j}{p}} \sqrt{\frac{j}{p}} + \frac{\sqrt{a}}{n} \sqrt{\frac{j}{p}} \sqrt{\frac{j}{p}} \sqrt{\frac{j}{p}} + \frac{\sqrt{a}}{n} \sqrt{\frac{j}{p}} \sqrt{\frac{j}{$
- tensor expressions naturally express high-order transitions
- tensor structure admits symmetries and sparsity
 - permutational index antisymmetry due to antisymmetry of wavefunction
 - sparsity due to strength of interactions diminishing with growing distance in the molecular orbital basis

CCSD using CTF

Extracted from Aquarius (Devin Matthews' code, https://github.com/devinamatthews/aquarius)

```
FMI["mi"] += 0.5*WMNEF["mnef"]*T(2)["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T(2)["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T(2)["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T(2)["afin"];
Z(2)["abij"] = WMNEF["ijab"];
Z(2)["abij"] += FAE["af"]*T(2)["fbij"];
Z(2)["abij"] -= FMI["ni"]*T(2)["abnj"];
Z(2)["abij"] += 0.5*WABEF["abef"]*T(2)["efij"];
Z(2)["abij"] += 0.5*WMNIJ["mnij"]*T(2)["abnn"];
Z(2)["abij"] += 0.5*WMNIJ["mnij"]*T(2)["abnn"];
```

Other electronic structure codes using CTF include QChem (via Libtensor) and VASP

Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum chemistry method suite

- provides CCSD and CCSDT
- uses Global Arrays a Partitioned Global Address Space (PGAS) backend for tensor contractions
- derives equations via Tensor Contraction Engine (TCE)

Coupled cluster on IBM BlueGene/Q and Cray XC30

Edgar Solomonik

Algorithms as Multilinear Tensor Equations

39/40

Future work

- symmetry preserving algorithms
 - high-performance implementations
 - bilinear algorithm complexity fast matrix multiplication
- sparsity in tensor computations
 - handling multiple sparse operands and sparse output
 - worst-case lower bounds and efficient algorithms
- tensor algorithms
 - most algorithms correspond to multiple dependent tensors operations
 - ► scheduling, blocking, and decomposition of multiple tensor operations
 - programming abstractions for tensor factorizations
- application-driven development
 - tensor decompositions, sparsity, symmetry all motivated by electronic structure applications
 - many further applications in tensor networks (DMRG), machine learning, etc.

Backup slides

Nesting of bilinear algorithms

Given two bilinear algorithms:

$$\begin{split} &\Lambda_1 = & (\textbf{F}_1^{(\textbf{A})}, \textbf{F}_1^{(\textbf{B})}, \textbf{F}_1^{(\textbf{C})}) \\ &\Lambda_2 = & (\textbf{F}_2^{(\textbf{A})}, \textbf{F}_2^{(\textbf{B})}, \textbf{F}_2^{(\textbf{C})}) \end{split}$$

We can nest them by computing their tensor product

$$\begin{split} & \Lambda_1 \otimes \Lambda_2 \coloneqq (\textbf{F}_1^{(\textbf{A})} \otimes \textbf{F}_2^{(\textbf{A})}, \textbf{F}_1^{(\textbf{B})} \otimes \textbf{F}_2^{(\textbf{B})}, \textbf{F}_1^{(\textbf{C})} \otimes \textbf{F}_2^{(\textbf{C})}) \\ & \mathsf{rank}(\Lambda_1 \otimes \Lambda_2) = \mathsf{rank}(\Lambda_1) \cdot \mathsf{rank}(\Lambda_2) \end{split}$$

Block-cyclic algorithm for s-step methods

For s-steps of a $(2m+1)^d$ -point stencil with block-size of $H^{1/d}/m$,

$$W_{\mathrm{Kr}} = O\left(rac{m s n^d}{H^{1/d} p}
ight) \quad S_{\mathrm{Kr}} = O(s n^d/(pH)) \quad Q_{\mathrm{Kr}} = O\left(rac{m s n^d}{H^{1/d} p}
ight)$$

which are good when $H = \Theta(n^d/p)$, so the algorithm is useful when the cache size is a bit smaller than n^d/p

2.5D LU on MIC

Symmetric matrix representation

Symmetric matrix

Unique part of symmetric matrix

Blocked distributions of a symmetric matrix

Naive blocked layout

Block-cyclic layout **P2** P7 P2

Edgar Solomonik

Cyclic distribution of a symmetric matrix

Cyclic layout

Improved blocked layout

Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

$$\begin{aligned} \tau_{ij}^{ab} &= t_{ij}^{ab} + \frac{1}{2} P_b^a P_j^i t_i^a t_j^b, \\ \tilde{F}_e^m &= f_e^m + \sum_{fn} v_{ef}^{mn} t_n^f, \end{aligned}$$

$$\tilde{F}_{e}^{a} = (1 - \delta_{ae})f_{e}^{a} - \sum_{m} \tilde{F}_{e}^{m}t_{m}^{a} - \frac{1}{2}\sum_{mnf} v_{ef}^{mn}t_{mn}^{af} + \sum_{fn} v_{ef}^{an}t_{n}^{f},$$

$$\tilde{F}_{i}^{m} = (1 - \delta_{mi})f_{i}^{m} + \sum_{e} \tilde{F}_{e}^{m}t_{i}^{e} + \frac{1}{2}\sum_{nef} v_{ef}^{mn}t_{in}^{ef} + \sum_{fn} v_{if}^{mn}t_{n}^{f},$$

Our CCSD factorization

$$\begin{split} \tilde{W}_{ei}^{mn} &= v_{ei}^{mn} + \sum_{f} v_{ef}^{mn} t_{i}^{f}, \\ \tilde{W}_{ij}^{mn} &= v_{ij}^{mn} + P_{j}^{i} \sum_{e} v_{ie}^{mn} t_{j}^{e} + \frac{1}{2} \sum_{ef} v_{ef}^{mn} \tau_{ij}^{ef}, \\ \tilde{W}_{ie}^{am} &= v_{ie}^{am} - \sum_{n} \tilde{W}_{ei}^{mn} t_{n}^{a} + \sum_{f} v_{ef}^{ma} t_{i}^{f} + \frac{1}{2} \sum_{nf} v_{ef}^{mn} t_{in}^{af}, \\ \tilde{W}_{ij}^{am} &= v_{ij}^{am} + P_{j}^{i} \sum_{e} v_{ie}^{am} t_{j}^{e} + \frac{1}{2} \sum_{ef} v_{ef}^{am} \tau_{ij}^{ef}, \\ z_{i}^{a} &= f_{i}^{a} - \sum_{m} \tilde{F}_{i}^{m} t_{m}^{a} + \sum_{e} f_{e}^{a} t_{i}^{e} + \sum_{em} v_{ei}^{ma} t_{m}^{e} + \sum_{em} v_{im}^{ae} \tilde{F}_{e}^{m} + \frac{1}{2} \sum_{efm} v_{ef}^{am} \tau_{im}^{ef} \\ &- \frac{1}{2} \sum_{emn} \tilde{W}_{ei}^{mn} t_{mn}^{ea}, \\ z_{ij}^{ab} &= v_{ij}^{ab} + P_{j}^{i} \sum_{e} v_{ie}^{ab} t_{j}^{e} + P_{b}^{a} P_{j}^{i} \sum_{me} \tilde{W}_{ie}^{am} t_{mj}^{eb} - P_{b}^{a} \sum_{m} \tilde{W}_{ij}^{am} t_{m}^{b} \\ &+ P_{b}^{a} \sum_{e} \tilde{F}_{e}^{a} t_{ij}^{eb} - P_{j}^{i} \sum_{m} \tilde{F}_{m}^{im} t_{mj}^{ab} + \frac{1}{2} \sum_{ef} v_{ef}^{ab} \tau_{ij}^{ef} + \frac{1}{2} \sum_{mn} \tilde{W}_{ij}^{mn} \tau_{mn}^{ab}, \end{split}$$

Edgar Solomonik

Stability of symmetry preserving algorithms

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000 orbitals on 4096 nodes of Mira 4 processes per node, 16 threads per process Total time: 18 mins *v*-orbitals, *o*-electrons

kernel	% of time	complexity	architectural bounds
DGEMM	45%	$O(v^4 o^2 / p)$	flops/mem bandwidth
broadcasts	20%	$O(v^4 o^2 / p \sqrt{M})$	multicast bandwidth
prefix sum	10%	<i>O</i> (<i>p</i>)	allreduce bandwidth
data packing	7%	$O(v^2 o^2 / p)$	integer ops
all-to-all-v	7%	$O(v^2o^2/p)$	bisection bandwidth
tensor folding	4%	$O(v^2o^2/p)$	memory bandwidth

Tiskin's path doubling algorithm

Tiskin gives a way to do path-doubling in $F = O(n^3/p)$ operations. We can partition each \mathbf{A}^k by path size (number of edges)

$$\mathbf{A}^k = \mathbf{I} \oplus \mathbf{A}^k(1) \oplus \mathbf{A}^k(2) \oplus \ldots \oplus \mathbf{A}^k(k)$$

where each $\mathbf{A}^{k}(I)$ contains the shortest paths of up to $k \ge I$ edges, which have exactly I edges. We can see that

$$\mathbf{A}^{l}(l) \leq \mathbf{A}^{l+1}(l) \leq \ldots \leq \mathbf{A}^{n}(l) = \mathbf{A}^{*}(l),$$

in particular $\mathbf{A}^*(I)$ corresponds to a sparse subset of $\mathbf{A}^I(I)$. The algorithm works by picking $I \in [k/2, k]$ and computing

$$(\mathbf{I} \oplus \mathbf{A})^{3k/2} \leq (\mathbf{I} \oplus \mathbf{A}^k(l)) \otimes \mathbf{A}^k,$$

which finds all paths of size up to 3k/2 by taking all paths of size exactly $l \ge k/2$ followed by all paths of size up to k.