
Algorithms as Multilinear Tensor Equations

Edgar Solomonik

Department of Computer Science
ETH Zurich

Georgia Institute of Technology, Atlanta GA, USA

February 18, 2016

Edgar Solomonik Algorithms as Multilinear Tensor Equations 1/40

Pervasive paradigms in scientific computing

What commonalities exist among resource-intensive computations
in simulation and data analysis?

I multidimensional datasets (observations, discretizations)

I higher-order relations between datasets, i.e. equations, maps,
graphs, hypergraphs

I sparsity and symmetry in structure of relations

I relations lead to solution directly or by acting as an evolutionary
(iterative) criterion

I algebraic descriptions of datasets and relations

Edgar Solomonik Algorithms as Multilinear Tensor Equations 2/40

Pervasive paradigms in scientific computing

What type of abstractions are desirable in high performance
computing?

I data abstractions should reflect native dimensionality and
structure

I global functional abstractions should efficiently orchestrate
communication and synchronization

I abstractions should enable development of provably efficient
algorithms

Edgar Solomonik Algorithms as Multilinear Tensor Equations 3/40

Outline

Introduction to tensor computations

Symmetry-preserving tensor algorithms

Communication-avoiding parallel algorithms

A massively-parallel tensor framework

Applications to electronic structure calculations

Conclusion

Edgar Solomonik Algorithms as Multilinear Tensor Equations 4/40

Basic data (vector) parallelism

Edgar Solomonik Algorithms as Multilinear Tensor Equations 5/40

Basic data (vector) parallelism

ci = f (ai)

Edgar Solomonik Algorithms as Multilinear Tensor Equations 6/40

Basic data (vector) parallelism

ci = f (ai)

Edgar Solomonik Algorithms as Multilinear Tensor Equations 6/40

Dense matrix operators

c = Ab

Edgar Solomonik Algorithms as Multilinear Tensor Equations 7/40

Sparse matrix operators

c = Ab

Edgar Solomonik Algorithms as Multilinear Tensor Equations 8/40

Sparse matrix operators

ci =
∑
j

Aijbj

Edgar Solomonik Algorithms as Multilinear Tensor Equations 8/40

Low-rank matrix factorizations

A = UV → c = UVb

Edgar Solomonik Algorithms as Multilinear Tensor Equations 9/40

Low-rank matrix factorizations

Aij =
∑
k

UikVkj → ci =
∑
j ,k

UikVkjbj

Edgar Solomonik Algorithms as Multilinear Tensor Equations 9/40

Low-rank matrix factorizations

c = UΣVb

Edgar Solomonik Algorithms as Multilinear Tensor Equations 9/40

Tensor operator

di =
∑
j ,k

Aijkbjck

Edgar Solomonik Algorithms as Multilinear Tensor Equations 9/40

Tensor operator

di =
∑
j ,k

Aijkbjck

Edgar Solomonik Algorithms as Multilinear Tensor Equations 10/40

Low-rank tensor factorizations (CP)

Aijk =
∑
l

UilVjlWkl → di =
∑
j ,k,l

UilVjlWklbjck

Edgar Solomonik Algorithms as Multilinear Tensor Equations 11/40

Low-rank tensor factorizations (CP)

Aijk =
∑
l

UilVjlWkl → di =
∑
j ,k,l

UilVjlWklbjck

Edgar Solomonik Algorithms as Multilinear Tensor Equations 11/40

Low-rank tensor factorizations (Tucker)

Aijk =
∑
l ,m,n

TlmnUilV
jmW kn → di =

∑
j ,k,l ,m,n

TlmnUilVjmWjnbjck

Edgar Solomonik Algorithms as Multilinear Tensor Equations 12/40

Low-rank tensor factorizations (Tucker)

Ajk
i =

∑
l ,m,n

TlmnUilVjmWkn → di =
∑

j ,k,l ,m,n

TlmnUilVjmWknbjck

Edgar Solomonik Algorithms as Multilinear Tensor Equations 12/40

Low-rank tensor factorizations (TT)

Aijk =
∑
l ,m

UilVljmWmk →
∑

j ,k,l ,m

UilVljmWmkbjck

Edgar Solomonik Algorithms as Multilinear Tensor Equations 13/40

Low-rank tensor factorizations (TT)

Aijk =
∑
l ,m

UilVljmWmk →
∑

j ,k,l ,m

UilVljmWmkbjck

Edgar Solomonik Algorithms as Multilinear Tensor Equations 13/40

Tensor contractions in electronic structure methods

Amplitude equation snippet from coupled cluster doubles model

0 = Vabij +
∑
k

TabikFkj +
∑

k,l ,m,n

TabklVklmnTmnij + . . .

Tensor hypercontraction representationa

Tabij =
∑
l ,m

ψalφjlZlmφjmψbm

a
Hohenstein, Parrish, Sherrill, Martinez, JCP, 2012

Edgar Solomonik Algorithms as Multilinear Tensor Equations 14/40

Structured tensor computations

Challenges for matrix/tensor algebraic abstractions

I data and relation sparsity → tensor sparsity

I low-order representations of data → tensor decompositions

I implicitly defined relations → implicit tensor representations

I data and relation equivalences → tensor symmetries

Edgar Solomonik Algorithms as Multilinear Tensor Equations 15/40

Exploiting symmetry in tensors

Tensor symmetry (e.g. Aij = Aji) reduces memory and cost
I for order d tensor, d! less memory
I dot product

∑
i ,j AijBij = 2

∑
i<j AijBij +

∑
i AiiBii

I matrix-vector multiplication1

ci =
∑
j

Aijbj =
∑
j

Aij(bi + bj)−
(∑

j

Aij

)
bi

I rank-2 vector outer product1

Cij = aibj + ajbi = (ai + aj)(bi + bj)− aibi − ajbj

I squaring a symmetric matrix (or AB + BA)1

Cij =
∑
k

AikAkj =
∑
k

(Aik + Akj + Aij)
2 − . . .

I for order ω contraction, ω! fewer multiplications 1

1
S., Demmel; Technical Report, ETH Zurich, 2015.

Edgar Solomonik Algorithms as Multilinear Tensor Equations 16/40

Symmetry preserving algorithms

By exploiting symmetry, we can reduce the number of
multiplications at the cost of more additions2

I partially symmetric contractions
I symmetry preserving algorithm can be nested over each index group
I reduction in multiplications implies reduction in nested calls
I cost reductions: 1.3 for CCSD, 2.1 for CCSDT

I algorithms generalize to most antisymmetric tensor contractions
I for Hermitian tensors, multiplication cost 3X more than addition
I BLAS routines: hemm and her2k as well as LAPACK routines like

hetrd (tridiagonal reduction) may be done with 25% fewer operations

I achieves (2/3)n3 bilinear rank for squaring a nonsymmetric
matrix, assuming elementwise commutativity

I allows blocking of symmetric contractions into smaller
(anti)symmetric contractions

2
S., Demmel; Technical Report, ETH Zurich, 2015.

Edgar Solomonik Algorithms as Multilinear Tensor Equations 17/40

Beyond computation cost

Algorithms should be not only work-efficient but
communication-efficient

I data movement and synchronization cost more energy than flops

I two types of data movement: vertical (intranode memory–cache)
and horizontal (internode network transfers)

I parallel algorithm design involves tradeoffs between computation,
communication, and synchronization

I lower bounds and parameterized algorithms provide optimal
solutions within a well-defined tuning space

Edgar Solomonik Algorithms as Multilinear Tensor Equations 18/40

Cost model for parallel algorithms

Given a schedule that specifies all work and communication tasks
on p processors, we consider the following costs, accumulated
along chains of tasks (as in α− β, BSP, and LogGP models),

I F – computation cost

I Q – vertical communication cost

I W – horizontal communication cost

I S – synchronization cost

Edgar Solomonik Algorithms as Multilinear Tensor Equations 19/40

Communication lower bounds: previous work

Multiplication of n × n matrices

I horizontal communication lower bound3 WMM = Ω
(

n2

p2/3

)
I memory-dependent horizontal communication lower bound4

WMM = Ω
(

n3

p
√
M

)
I with M = cn2/p memory, can hope to obtain W = O(n2/

√
cp)

communication

I standard parallel libraries (ScaLAPACK, Elemental) optimal only
for c = 1

3
Aggarwal, Chandra, Snir, TCS, 1990

4
Irony, Toledo, Tiskin, JPDC, 2004

Edgar Solomonik Algorithms as Multilinear Tensor Equations 20/40

Communication-efficient matrix multiplication

Communication-optimal algorithms for matrix multiplication have
been studied extensively5

They continue to be attractive on modern architectures6

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D SUMMA
2D SUMMA

ScaLAPACK PDGEMM

 0

 50

 100

 150

 200

256 512 1024 2048 4096
G

ig
af

lo
p/

s/
no

de

#nodes

Matrix multiplication strong scaling on Mira (BG/Q)

2.5D MM n=65,536
2D MM n=65,536

2.5D MM n=16,384
2D MM n=16,384

5
Berntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar,

IBM, 1995; McColl, Tiskin, Algorithmica, 1999; ...
6

S., Bhatele, Demmel, SC, 2011

Edgar Solomonik Algorithms as Multilinear Tensor Equations 21/40

Synchronization cost lower bounds

Unlike matrix multiplication, many algorithms in numerical linear
algebra have polynomial depth

I synchronization cost bounds7 SMM = Θ
(

n3

pM3/2

)
I algorithms for Cholesky, LU, QR, SVD have additional

dependencies

I lowering computation and communication costs, requires
additional synchronization

7
Ballard, Demmel, Holtz, Schwartz, SIAM JMAA, 2011

Edgar Solomonik Algorithms as Multilinear Tensor Equations 22/40

Tradeoffs in the diamond DAG

For the n × n diamond DAG, there is a tradeoff between
computation and synchronization costs8 F · S = Ω(n2)

We generalize such tradeoffs to consider horizontal communication
and arbitrary (polynomial or exponential) interval expansion9

8
Papadimitriou, Ullman, SIAM JC, 1987

9
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Edgar Solomonik Algorithms as Multilinear Tensor Equations 23/40

Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms,
represented via dependency hypergraphs.a

For triangular solve with an n × n matrix

FTRSV · STRSV = Ω
(
n2
)

For Cholesky of an n × n matrix

FCHOL · S2
CHOL = Ω

(
n3
)

WCHOL · SCHOL = Ω
(
n2
)

Proof employs classical Loomis-Whitney inequality.

For any R ⊂ N× N× N, three projections of R onto N× N have
total size at least |R|2/3

a
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Edgar Solomonik Algorithms as Multilinear Tensor Equations 24/40

Communication-efficient LU factorization

For any c ∈ [1, p1/3], use cn2/p memory per processor and obtain

WLU = O(n2/
√
cp), SLU = O(

√
cp)

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

LU with tournament pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU
ScaLAPACK PDGETRF

I LU with pairwise pivoting10 extended to tournament pivoting 11

I first implementation of a communication-optimal LU algorithm

10
Tiskin, FGCS, 2007

11
S., Demmel, Euro-Par, 2011

Edgar Solomonik Algorithms as Multilinear Tensor Equations 25/40

Communication-efficient QR factorization

I WQR = O(n2/
√
cp),SQR = O(

√
cp) using Givens rotations12

I Householder form can be reconstructed quickly from TSQR13

I optimal QR communication and synchronization (modulo log
factors) costs can be obtained with Householder representation14

I Householder aggregation yields performance improvements

 0

 5

 10

 15

 20

144 288 576 1152 2304 4608 9216

Te
ra

flo
ps

#cores

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

Two-Level CAQR-HR
Two-Level Householder

CAQR-HR
Elemental QR

ScaLAPACK QR
Scatter-Apply CAQR

Binary-Tree CAQR

12
Tiskin, FGCS, 2007

13
Ballard, Demmel, Grigori, Jacquelin, Nguyen, Diep, S., IPDPS, 2014

14
S., UCB, 2014

Edgar Solomonik Algorithms as Multilinear Tensor Equations 26/40

Communication-efficient eigenvalue computation

For the dense symmetric matrix eigenvalue problem

I WSE = O(n2/
√
cp),SQR = O(

√
cp log2 p) 15

I optimal horizontal communication can be obtained with
left-looking algorithm and aggregation, however, requires more
vertical communication

I successive band reduction can be used to minimize both
communication costs

15
S., UCB, 2014. S., Hoefler, Demmel, in preparation

Edgar Solomonik Algorithms as Multilinear Tensor Equations 27/40

Synchronization tradeoffs in stencils

Our lower bound analysis extends also to sparse iterative
methods.16

For computing s applications of a (2m + 1)d -point stencil

FSt · Sd
St = Ω

(
m2d · sd+1

)
WSt · Sd−1

St = Ω
(
md · sd

)
proof requires generalization of Loomis-Whitney inequality to order
d set and order d − 1 projections

I time-blocking lowers synchronization and vertical communication
costs, but raises horizontal communication

I we suggest alternative approach that minimizes vertical and
horizontal communication, but not synchronization

16
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Edgar Solomonik Algorithms as Multilinear Tensor Equations 28/40

Beyond the Loomis-Whitney inequalities

Loomis-Whitney inequalities are not sufficient for all computations

I symmetry preserving tensor contraction algorithms have arbitrary
order projections from order d set

I bilinear algorithms17 provide a more general framework

I a bilinear algorithm is defined by matrices F (A),F (B),F (C),

c = F (C)[(F (A)Ta) ◦ (F (B)Tb)]

where ◦ is the Hadamard (pointwise) product

I communication lower bounds can be formulated in terms of rank18

17
Pan, Springer, 1984

18
S., Hoefler, Demmel, in preparation

Edgar Solomonik Algorithms as Multilinear Tensor Equations 29/40

Communication cost of symmetry preserving algorithms

For contraction of order s + v tensor with order v + t tensor

I Υ is the nonsymmetric contraction algorithm

I Ψ is the best previously known algorithm

I Φ is the symmetry preserving algorithm

Asymptotic communication lower bounds based on bilinear
expansiona (H–cache size, p–#processors, n–dimension):
s t v FΥ FΨ FΦ QΥ,Ψ QΦ WΥ WΨ WΦ

1 1 0 n2 n2 n2

2 n2 n2 n
p1/2

n
p1/2

n
p1/2

2 1 0 n3 n3

2
n3

6 n3 n3 n n2

p2/3
n2

p2/3

2 2 0 n4 n4

4
n4

24 n4 n4 n2

p1/2
n2

p1/2
n2

p1/2

1 1 1 n3 n3 n3

6
n3

H1/2
n3

H1/2
n2

p2/3
n2

p2/3
n2

p2/3

2 1 1 n4 n4

2
n4

24
n4

H1/2
n4

H1/3 n2 n2 n3

p3/4

2 2 2 n6 n6

8
n6

720
n6

H1/2
n6

H1/2
n4

p2/3
n4

p2/3
n4

p2/3

a
S., Hoefler, Demmel, ETHZ, 2014

Edgar Solomonik Algorithms as Multilinear Tensor Equations 30/40

Open theoretical problems

I lower bounds for multiplication of a sparse and a dense matrix

I lower bounds for nested bilinear algorithms

I broader parameterizations of algorithmic representations needed
for QR and SVD lower bounds

Edgar Solomonik Algorithms as Multilinear Tensor Equations 31/40

Tensor algebra as a programming abstraction

Cyclops Tensor Framework19

I contraction/summation/functions of tensors

I distributed symmetric-packed/sparse storage via cyclic layout

I parallelization via MPI+OpenMP(+CUDA)

19
S., Hammond, Demmel, UCB, 2011. S., Matthews, Hammond, Demmel, IPDPS, 2013

Edgar Solomonik Algorithms as Multilinear Tensor Equations 32/40

Tensor algebra as a programming abstraction

Cyclops Tensor Framework

I contraction/summation/functions of tensors

I distributed symmetric-packed/sparse storage via cyclic layout

I parallelization via MPI+OpenMP(+CUDA)

Jacobi iteration example code snippet

void Jacobi(Matrix <> A, Vector <> b, int n){
Matrix <> R(A);
R["ii"] = 0.0;
Vector <> x(n), d(n), r(n);
Function <> inv ([](double & d){ return 1./d; });
d["i"] = inv(A["ii"]); // set d to inverse of diagonal of A
do {

x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual

} while (r.norm2 () > 1.E-6); // check for convergence
}

Edgar Solomonik Algorithms as Multilinear Tensor Equations 32/40

Tensor algebra as a programming abstraction

Cyclops Tensor Framework

I contraction/summation/functions of tensors

I distributed symmetric-packed/sparse storage via cyclic layout

I parallelization via MPI+OpenMP(+CUDA)

Møller-Plesset perturbation theory (MP3) code snippet

Z["abij"] += Fab["af"]*T["fbij"];
Z["abij"] -= Fij["ni"]*T["abnj"];
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];
Z["abij"] -= Vaibj["amei"]*T["ebmj"];

Edgar Solomonik Algorithms as Multilinear Tensor Equations 32/40

Betweenness centrality

Betweenness centrality code snippet, for k of n nodes

void btwn_central(Matrix <int > A, Matrix <path > P, int n, int k){
Monoid <path > mon(...,

[](path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

}, ...);

Matrix <path > Q(n,k,mon); // shortest path matrix
Q["ij"] = P["ij"];

Function <int ,path > append ([](int w, path p){
return path(w+p.w, p.m);

};);

for (int i=0; i<n; i++)
Q["ij"] = append(A["ik"],Q["kj"]);

...
}

Edgar Solomonik Algorithms as Multilinear Tensor Equations 33/40

Performance of CTF for dense computations

CTF is highly tuned for massively-parallel machines

I virtualized multidimensional processor grids

I topology-aware mapping and collective communication

I performance-model-driven decomposition done at runtime

I optimized redistribution kernels for tensor transposition

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

4096 8192 16384 32768 65536 131072 262144

Te
ra

flo
p/

s

#cores

BG/Q matrix multiplication

CTF
Scalapack

Edgar Solomonik Algorithms as Multilinear Tensor Equations 34/40

Performance of CTF for sparse computations

MP3 leveraging sparse-dense tensor contractionsa

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44

24 48 96 192 384

se
co

nd
s/

ite
ra

tio
n

#cores

Weak scaling of MP3 (m=40, n=160 on 24 cores)

dense
16% sparse
8% sparse
4% sparse
2% sparse
1% sparse

 0

 2

 4

 6

 8

 10

 12

 14

 16

24 48 96 192 384 768

se
co

nd
s/

ite
ra

tio
n

#cores

Strong scaling of MP3 with m=40, n=160

dense
16% sparse
8% sparse
4% sparse
2% sparse
1% sparse

All-pairs shortest-paths based on path doubling with sparsification

 0

 20

 40

 60

 80

 100

 120

 140

24 48 96 192 384

se
co

nd
s

#cores

Weak scaling of APSP (n=2K on 24 cores)

regular path doubling
sparse path doubling

 0

 4

 8

 12

 16

 20

 24

24 48 96 192 384 768

se
co

nd
s

#cores

Strong scaling of APSP with n=2K

regular path doubling
sparse path doubling

a
S., Hoefler, Demmel, arXiv, 2015

Edgar Solomonik Algorithms as Multilinear Tensor Equations 35/40

Post-Hartree-Fock (HF) methods

Accurate models of electronic correlation require approximation of
contributions of excited-state transitions.

I Møller-Plesset methods provide perturbative corrections

I Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) iteratively
solve (2nd, 3rd, 4th) order equations in the state space

I tensor expressions naturally express high-order transitions
I tensor structure admits symmetries and sparsity
I permutational index antisymmetry due to antisymmetry of

wavefunction
I sparsity due to strength of interactions diminishing with growing

distance in the molecular orbital basis

Edgar Solomonik Algorithms as Multilinear Tensor Equations 36/40

CCSD using CTF

Extracted from Aquarius (Devin Matthews’ code,
https://github.com/devinamatthews/aquarius)

FMI["mi"] += 0.5*WMNEF["mnef"]*T(2)["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T(2)["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T(2)["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T(2)["afin"];

Z(2)["abij"] = WMNEF["ijab"];
Z(2)["abij"] += FAE["af"]*T(2)["fbij"];
Z(2)["abij"] -= FMI["ni"]*T(2)["abnj"];
Z(2)["abij"] += 0.5*WABEF["abef"]*T(2)["efij"];
Z(2)["abij"] += 0.5*WMNIJ["mnij"]*T(2)["abmn"];
Z(2)["abij"] -= WAMEI["amei"]*T(2)["ebmj"];

Other electronic structure codes using CTF include QChem (via
Libtensor) and VASP

Edgar Solomonik Algorithms as Multilinear Tensor Equations 37/40

https://github.com/devinamatthews/aquarius

Comparison with NWChem

NWChem is the most commonly-used distributed-memory
quantum chemistry method suite

I provides CCSD and CCSDT

I uses Global Arrays a Partitioned Global Address Space (PGAS)
backend for tensor contractions

I derives equations via Tensor Contraction Engine (TCE)

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSD on Edison

NWChem w20
w15
w10
w8

Aquarius-CTF w20
w15
w10
w8

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSDT on Edison

NWChem w3
w2

Aquarius-CTF w4
w3
w2

Edgar Solomonik Algorithms as Multilinear Tensor Equations 38/40

Coupled cluster on IBM BlueGene/Q and Cray XC30

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZa

 4

 8

 16

 32

 64

 128

 256

 512

 1024

512 1024 2048 4096 8192 16384 32768

Te
ra

flo
ps

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 10

 20

 30

 40

 50

 60

512 1024 2048 4096 8192 16384

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 1

 2
 4

 8
 16

 32
 64

 128
 256

 512

32 64 128 256 512 1024 2048 4096

Te
ra

flo
ps

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 50

 100

 150

 200

 250

 300

 350

32 64 128 256 512 1024 2048 4096

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

a
S., Matthews, Hammond, Demmel, JPDC, 2014

Edgar Solomonik Algorithms as Multilinear Tensor Equations 39/40

Future work

I symmetry preserving algorithms
I high-performance implementations
I bilinear algorithm complexity – fast matrix multiplication

I sparsity in tensor computations
I handling multiple sparse operands and sparse output
I worst-case lower bounds and efficient algorithms

I tensor algorithms
I most algorithms correspond to multiple dependent tensors operations
I scheduling, blocking, and decomposition of multiple tensor operations
I programming abstractions for tensor factorizations

I application-driven development
I tensor decompositions, sparsity, symmetry all motivated by electronic

structure applications
I many further applications in tensor networks (DMRG), machine

learning, etc.

Edgar Solomonik Algorithms as Multilinear Tensor Equations 40/40

Backup slides

Edgar Solomonik Algorithms as Multilinear Tensor Equations 41/40

Symmetry preserving algorithm vs Strassen’s algorithm

 1

 2

 4

 8

 16

 32

 64

10 100 1000 10000 100000 1e+06

[n
ω
/(s

!t!
v!

)]
/ #

m
ul

tip
lic

at
io

ns
(s

pe
ed

-u
p

ov
er

 c
la

ss
ic

al
 d

ire
ct

 e
va

lu
at

io
n

al
g.

)

ns/s! (matrix dimension)

Symmetry preserving alg. vs Strassen’s alg. (s=t=v=ω/3)

Strassen’s algorithm
Sym. preserving ω=6
Sym. preserving ω=3

Edgar Solomonik Algorithms as Multilinear Tensor Equations 42/40

Nesting of bilinear algorithms

Given two bilinear algorithms:

Λ1 =(F
(A)
1 ,F

(B)
1 ,F

(C)
1)

Λ2 =(F
(A)
2 ,F

(B)
2 ,F

(C)
2)

We can nest them by computing their tensor product

Λ1 ⊗ Λ2 :=(F
(A)
1 ⊗ F

(A)
2 ,F

(B)
1 ⊗ F

(B)
2 ,F

(C)
1 ⊗ F

(C)
2)

rank(Λ1 ⊗ Λ2) = rank(Λ1) · rank(Λ2)

Edgar Solomonik Algorithms as Multilinear Tensor Equations 43/40

Block-cyclic algorithm for s-step methods

For s-steps of a (2m + 1)d -point stencil with block-size of H1/d/m,

WKr = O

(
msnd

H1/dp

)
SKr = O(snd/(pH)) QKr = O

(
msnd

H1/dp

)
which are good when H = Θ(nd/p), so the algorithm is useful
when the cache size is a bit smaller than nd/p

Edgar Solomonik Algorithms as Multilinear Tensor Equations 44/40

2.5D LU on MIC

 100

 150

 200

 250

 300

 350

 400

 450

16 32 64 128 256

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Stampede (MIC + Sandy Bridge)

2.5D hybrid LU n=131,072
2D hybrid LU n=131,072

2.5D pure-cpu LU n=131,072
2.5D hybrid LU n=65,536

2D hybrid LU n=65,536
2.5D pure-cpu LU n=65,536

Edgar Solomonik Algorithms as Multilinear Tensor Equations 45/40

Topology-aware mapping on BG/Q

 0

 20

 40

 60

 80

 100

256 512 1024 2048 4096

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Mira (BG/Q), n=65,536

2D LU, custom mapping
2D LU, default mapping

Edgar Solomonik Algorithms as Multilinear Tensor Equations 46/40

Symmetric matrix representation

Edgar Solomonik Algorithms as Multilinear Tensor Equations 47/40

Blocked distributions of a symmetric matrix

Edgar Solomonik Algorithms as Multilinear Tensor Equations 48/40

Cyclic distribution of a symmetric matrix

Edgar Solomonik Algorithms as Multilinear Tensor Equations 49/40

Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

τ abij = tabij +
1

2
Pa
bP

i
j t

a
i t

b
j ,

F̃m
e = f me +

∑
fn

vmn
ef t fn ,

F̃ a
e = (1− δae)f ae −

∑
m

F̃m
e tam −

1

2

∑
mnf

vmn
ef tafmn +

∑
fn

vanef t
f
n ,

F̃m
i = (1− δmi)f

m
i +

∑
e

F̃m
e tei +

1

2

∑
nef

vmn
ef tefin +

∑
fn

vmn
if t fn ,

Edgar Solomonik Algorithms as Multilinear Tensor Equations 50/40

Our CCSD factorization

W̃mn
ei = vmn

ei +
∑
f

vmn
ef t fi ,

W̃mn
ij = vmn

ij + P i
j

∑
e

vmn
ie tej +

1

2

∑
ef

vmn
ef τ

ef
ij ,

W̃ am
ie = v am

ie −
∑
n

W̃mn
ei tan +

∑
f

vma
ef t fi +

1

2

∑
nf

vmn
ef tafin ,

W̃ am
ij = v am

ij + P i
j

∑
e

v am
ie tej +

1

2

∑
ef

v am
ef τ

ef
ij ,

zai = f ai −
∑
m

F̃m
i tam +

∑
e

f ae t
e
i +

∑
em

vma
ei tem +

∑
em

v ae
im F̃

m
e +

1

2

∑
efm

v am
ef τ

ef
im

− 1

2

∑
emn

W̃mn
ei teamn,

zabij = v ab
ij + P i

j

∑
e

v ab
ie tej + Pa

bP
i
j

∑
me

W̃ am
ie tebmj − Pa

b

∑
m

W̃ am
ij tbm

+ Pa
b

∑
e

F̃ a
e t

eb
ij − P i

j

∑
m

F̃m
i tabmj +

1

2

∑
ef

v ab
ef τ

ef
ij +

1

2

∑
mn

W̃mn
ij τ abmn,

Edgar Solomonik Algorithms as Multilinear Tensor Equations 51/40

Stability of symmetry preserving algorithms

Edgar Solomonik Algorithms as Multilinear Tensor Equations 52/40

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and
1000 orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
v -orbitals, o-electrons

kernel % of time complexity architectural bounds

DGEMM 45% O(v4o2/p) flops/mem bandwidth

broadcasts 20% O(v4o2/p
√
M) multicast bandwidth

prefix sum 10% O(p) allreduce bandwidth

data packing 7% O(v2o2/p) integer ops

all-to-all-v 7% O(v2o2/p) bisection bandwidth

tensor folding 4% O(v2o2/p) memory bandwidth

Edgar Solomonik Algorithms as Multilinear Tensor Equations 53/40

Tiskin’s path doubling algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations.
We can partition each Ak by path size (number of edges)

Ak = I⊕ Ak(1)⊕ Ak(2)⊕ . . .⊕ Ak(k)

where each Ak(l) contains the shortest paths of up to k ≥ l edges,
which have exactly l edges. We can see that

Al(l) ≤ Al+1(l) ≤ . . . ≤ An(l) = A∗(l),

in particular A∗(l) corresponds to a sparse subset of Al(l).
The algorithm works by picking l ∈ [k/2, k] and computing

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

which finds all paths of size up to 3k/2 by taking all paths of size
exactly l ≥ k/2 followed by all paths of size up to k .

Edgar Solomonik Algorithms as Multilinear Tensor Equations 54/40

	Introduction to tensor computations
	Symmetry-preserving tensor algorithms
	Communication-avoiding parallel algorithms
	A massively-parallel tensor framework
	Applications to electronic structure calculations
	Conclusion

