Edgar Solomonik

Department of EECS, Computer Science Division, UC Berkeley

Feb 7, 2014

Aim

Motivation and goals

Cyclops (cyclic-operations) Tensor Framework

provide primitives for distributed memory tensor contractions

└─Aim

Motivation and goals

- provide primitives for distributed memory tensor contractions
- take advantage of thread (two-level) parallelism

Aim

Motivation and goals

- provide primitives for distributed memory tensor contractions
- take advantage of thread (two-level) parallelism
- expose a simple domain specific language for contractions

Cyclops Tensor Framewo

Motivation and goals

- provide primitives for distributed memory tensor contractions
- take advantage of thread (two-level) parallelism
- expose a simple domain specific language for contractions
- allow for efficient tensor redistribution and slicing

Cyclops Tensor Framework

Motivation and goals

- provide primitives for distributed memory tensor contractions
- take advantage of thread (two-level) parallelism
- expose a simple domain specific language for contractions
- allow for efficient tensor redistribution and slicing
- exploit permutational tensor symmetry efficiently

Cyclops Tensor Framework

Motivation and goals

- provide primitives for distributed memory tensor contractions
- take advantage of thread (two-level) parallelism
- expose a simple domain specific language for contractions
- allow for efficient tensor redistribution and slicing
- exploit permutational tensor symmetry efficiently
- uses only MPI, BLAS, and OpenMP and is a library

L Interface

Define a parallel world

CTF relies on MPI (Message Passing Interface) for multiprocessor parallelism

- a set of processors in MPI corresponds to a communicator (MPI_Comm)
- MPI_COMM_WORLD is the default communicators containing all processes
- CTF_World dw(comm) defines an instance of CTF on any MPI communicator

Fast tensor contractions for Coupled Cluster 4/ 28 Cyclops Tensor Framework

L Interface

Define a tensor

A tensor is a multidimensional array, e.g.

T^{ab}_{ij}

where **T** is *m* × *m* × *n* × *n* antisymmetric in *ab* and in *ij* ■ CTF_Tensor T(4,{m,m,n,n},{AS,NS,AS,NS},dw)

L Interface

Define a tensor

A tensor is a multidimensional array, e.g.

T^{ab}

where **T** is $m \times m \times n \times n$ antisymmetric in *ab* and in *ij*

- CTF_Tensor T(4,{m,m,n,n},{AS,NS,AS,NS},dw)
- an 'AS' dimension is antisymmetric with the next

Linterface

Define a tensor

A tensor is a multidimensional array, e.g.

T^{ab}

where **T** is $m \times m \times n \times n$ antisymmetric in *ab* and in *ij*

- CTF_Tensor T(4,{m,m,n,n},{AS,NS,AS,NS},dw)
- an 'AS' dimension is antisymmetric with the next
- symmetric (SY) and symmetric-hollow (SH) are also possible

Fast tensor contractions for Coupled Cluster Cyclops Tensor Framework

4/28

L Interface

Define a tensor

A tensor is a multidimensional array, e.g.

T^{ab}

where **T** is $m \times m \times n \times n$ antisymmetric in *ab* and in *ij*

- CTF_Tensor T(4, {m,m,n,n}, {AS,NS,AS,NS}, dw)
- an 'AS' dimension is antisymmetric with the next
- symmetric (SY) and symmetric-hollow (SH) are also possible
- the first dimension of the tensor is mapped linearly onto memory

Define a tensor

L Interface

A tensor is a multidimensional array, e.g.

where **T** is $m \times m \times n \times n$ antisymmetric in *ab* and in *ij*

- CTF_Tensor T(4,{m,m,n,n},{AS,NS,AS,NS},dw)
- an 'AS' dimension is antisymmetric with the next
- symmetric (SY) and symmetric-hollow (SH) are also possible

T^{ab}

- the first dimension of the tensor is mapped linearly onto memory
- there are also obvious derived types for CTF_Tensor: CTF_Matrix, CTF_Vector, CTF_Scalar

└─ Cyclops Tensor Framework └─ Interface

Contract tensors

CTF can express a tensor contraction like

$$Z^{ab}_{ij} = Z^{ab}_{ij} + 2 \cdot P(a,b) \sum_k F^a_k \cdot T^{kb}_{ij}$$

where P(a, b) implies antisymmetrization of index pair *ab*, Z["abij"] += 2.0*F["ak"]*T["kbij"]

Contract tensors

CTF can express a tensor contraction like

$$Z^{ab}_{ij} = Z^{ab}_{ij} + 2 \cdot P(a,b) \sum_k F^a_k \cdot T^{kb}_{ij}$$

where P(a, b) implies antisymmetrization of index pair ab,

- Z[" abij "] += 2.0*F[" ak"]*T[" kbij"]
- P(a, b) is applied implicitly if Z is antisymmetric in ab

└─ Interface

Contract tensors

CTF can express a tensor contraction like

$$Z^{ab}_{ij} = Z^{ab}_{ij} + 2 \cdot P(a, b) \sum_k F^a_k \cdot T^{kb}_{ij}$$

where P(a, b) implies antisymmetrization of index pair ab,

- Z[" abij"] += 2.0*F["ak"]*T["kbij"]
- P(a, b) is applied implicitly if **Z** is antisymmetric in *ab*
- Z, F, T should all be defined on the same world and all processes in the world must call the contraction bulk synchronously

Contract tensors

CTF can express a tensor contraction like

$$Z^{ab}_{ij} = Z^{ab}_{ij} + 2 \cdot P(a, b) \sum_k F^a_k \cdot T^{kb}_{ij}$$

where P(a, b) implies antisymmetrization of index pair ab,

- Z[" abij"] += 2.0*F["ak"]*T["kbij"]
- P(a, b) is applied implicitly if Z is antisymmetric in ab
- Z, F, T should all be defined on the same world and all processes in the world must call the contraction bulk synchronously
- the beginning of the end of all for loops...

L Interface

Access and write tensor data

CTF takes away your data pointer

 Access arbitrary sparse subsets of the tensor by global index (coordinate format)

L Interface

Access and write tensor data

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)

L Interface

Access and write tensor data

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)

L Interface

Access and write tensor data

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)
- Matlab submatrix notation: A[j : k, l : m]

L Interface

Access and write tensor data

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)
- Matlab submatrix notation: A[j : k, l : m]
 - T. slice (int * offsets , int * ends) returns the subtensor

L Interface

Access and write tensor data

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)
- Matlab submatrix notation: A[j : k, l : m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off, int corner_end) does the same

L Interface

Access and write tensor data

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices , double * data) (also possible to scale)
- Matlab submatrix notation: A[j : k, l : m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off, int corner_end) does the same
 - can also sum a subtensor from one tensor with a subtensor of another tensor

L Interface

Access and write tensor data

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)
- Matlab submatrix notation: A[j : k, l : m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off, int corner_end) does the same
 - can also sum a subtensor from one tensor with a subtensor of another tensor
 - different subworlds can read different subtensors simultaneously

L Interface

Access and write tensor data

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)
- Matlab submatrix notation: A[j : k, l : m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off, int corner_end) does the same
 - can also sum a subtensor from one tensor with a subtensor of another tensor
 - different subworlds can read different subtensors simultaneously
- Extract a subtensor of any permutation of the tensor

└─ Interface

Access and write tensor data

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)
- Matlab submatrix notation: A[j : k, l : m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off, int corner_end) does the same
 - can also sum a subtensor from one tensor with a subtensor of another tensor
 - different subworlds can read different subtensors simultaneously
- Extract a subtensor of any permutation of the tensor
 - given mappings *P*, *Q*, does *B*[*i*, *j*] = *A*[*P*[*i*], *Q*[*j*]] via permute()

└─ Interface

Access and write tensor data

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)
- Matlab submatrix notation: A[j : k, l : m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off, int corner_end) does the same
 - can also sum a subtensor from one tensor with a subtensor of another tensor
 - different subworlds can read different subtensors simultaneously
- Extract a subtensor of any permutation of the tensor
 - given mappings *P*, *Q*, does *B*[*i*, *j*] = *A*[*P*[*i*], *Q*[*j*]] via permute()
 - P and Q may access only subsets of A (if B is smaller)

└─ Interface

Access and write tensor data

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)
- Matlab submatrix notation: A[j : k, l : m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off, int corner_end) does the same
 - can also sum a subtensor from one tensor with a subtensor of another tensor
 - different subworlds can read different subtensors simultaneously
- Extract a subtensor of any permutation of the tensor
 - given mappings *P*, *Q*, does *B*[*i*, *j*] = *A*[*P*[*i*], *Q*[*j*]] via permute()
 - P and Q may access only subsets of A (if B is smaller)
 - B may be defined on subworlds on the world on which A is defined and each subworld may specify different P and Q

L Interface

Write a Coupled Cluster code

Extracted from Aquarius (Devin Matthews' code)

FMI["mi"] += 0.5*WMNEF["mnef"]*T(2)["efin"]; WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T(2)["efij"]; FAE["ae"] -= 0.5*WMNEF["mnef"]*T(2)["afmn"]; WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T(2)["afin"];

Cyclops Tensor Framework

L Interface

Write more Coupled Cluster code

Extracted from Aquarius (Devin Matthews' code)

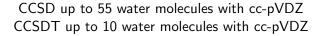
```
Z(1)["ai"] += 0.25*WMNEF["mnef"]*T(3)["aefimn"];
```

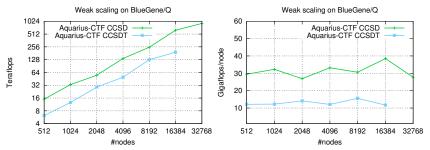
Z(2)["abij"] += 0.5*WAMEF["bmef"]*T(3)["aefijm"]; Z(2)["abij"] -= 0.5*WMNEJ["mnej"]*T(3)["abeinm"]; Z(2)["abij"] += FME["me"]*T(3)["abeijm"];

Z(3)["abcijk"] = WABEJ["bcek"]*T(2)["aeij"]; Z(3)["abcijk"] -= WAMIJ["bmjk"]*T(2)["acim"]; Z(3)["abcijk"] += FAE["ce"]*T(3)["abeijk"]; Z(3)["abcijk"] -= FMI["mk"]*T(3)["abcijm"]; Z(3)["abcijk"] += 0.5*WABEF["abef"]*T(3)["efcijk"]; Z(3)["abcijk"] += 0.5*WMNIJ["mnij"]*T(3)["abcmnk"]; Z(3)["abcijk"] -= WAMEI["amei"]*T(3)["ebcmjk"];

Performance

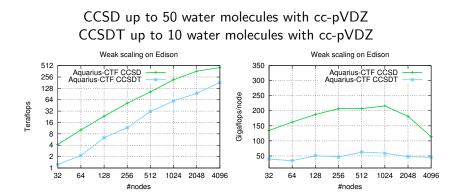
Run your Coupled Cluster code on a IBM supercomputer





Performance

Run your Coupled Cluster code on the computer next door (Edison)



Performance

Run your Coupled Cluster code faster than NWChem

NWChem is a distributed-memory quantum chemistry method suite

provides CCSD and CCSDT

CCSD performance on Edison (thanks to Jeff Hammond for building NWChem and collecting data)

Performance

Run your Coupled Cluster code faster than NWChem

NWChem is a distributed-memory quantum chemistry method suite

- provides CCSD and CCSDT
- uses Global Arrays a Partitioned Global Address Space (PGAS) backend for tensor contractions

CCSD performance on Edison (thanks to Jeff Hammond for building NWChem and collecting data)

Performance

Run your Coupled Cluster code faster than NWChem

NWChem is a distributed-memory quantum chemistry method suite

- provides CCSD and CCSDT
- uses Global Arrays a Partitioned Global Address Space (PGAS) backend for tensor contractions
- derivation automatically done by Tensor Contraction Engine (TCE)

CCSD performance on Edison (thanks to Jeff Hammond for building NWChem and collecting data)

Performance

Run your Coupled Cluster code faster than NWChem

NWChem is a distributed-memory quantum chemistry method suite

- provides CCSD and CCSDT
- uses Global Arrays a Partitioned Global Address Space (PGAS) backend for tensor contractions
- derivation automatically done by Tensor Contraction Engine (TCE)

CCSD performance on Edison (thanks to Jeff Hammond for building NWChem and collecting data)

NWChem 40 water molecules on 1024 nodes: 44 min

Performance

Run your Coupled Cluster code faster than NWChem

NWChem is a distributed-memory quantum chemistry method suite

- provides CCSD and CCSDT
- uses Global Arrays a Partitioned Global Address Space (PGAS) backend for tensor contractions
- derivation automatically done by Tensor Contraction Engine (TCE)

CCSD performance on Edison (thanks to Jeff Hammond for building NWChem and collecting data)

- NWChem 40 water molecules on 1024 nodes: 44 min
- CTF 40 water molecules on 1024 nodes: 9 min

Performance

Ongoing development in CTF

Lots of room for improvement, ongoing effort

 Multi-contraction scheduler being developed by Richard Lin (UCB)

Performance

Ongoing development in CTF

Lots of room for improvement, ongoing effort

- Multi-contraction scheduler being developed by Richard Lin (UCB)
- Better performance models and their external exposure

Performance

Ongoing development in CTF

Lots of room for improvement, ongoing effort

- Multi-contraction scheduler being developed by Richard Lin (UCB)
- Better performance models and their external exposure
- Improvements to tensor slicing and usage thereof for CCSD(T) and CCSDT(Q)

Performance

Ongoing development in CTF

Lots of room for improvement, ongoing effort

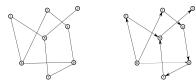
- Multi-contraction scheduler being developed by Richard Lin (UCB)
- Better performance models and their external exposure
- Improvements to tensor slicing and usage thereof for CCSD(T) and CCSDT(Q)
- Faster symmetric tensor contraction algorithms...

— The relationship between tensors and hypergraphs

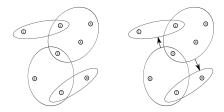
Hypergraphs?

Graphs and hypergraphs

Examples of a undirected graph and directed graph



Examples of a undirected hypergraph and directed hypergraph



- The relationship between tensors and hypergraphs

└─ Matrices = Graphs

Matrices are graphs

A graph G = (V, E) is a set of vertices V and a set of edges E.

• we can associate a weight w_{ij} for each edge $(i, j) \in E$.

└─ Matrices = Graphs

Matrices are graphs

- we can associate a weight w_{ij} for each edge $(i, j) \in E$.
- the weights w_{ij} correspond to a (typically sparse) matrix **W**

└─ Matrices = Graphs

Matrices are graphs

- we can associate a weight w_{ij} for each edge $(i,j) \in E$.
- the weights *w_{ij}* correspond to a (typically sparse) matrix **W**
- the rows and columns of W correspond to vertices and its entries to edges

└─ Matrices = G<u>raphs</u>

Matrices are graphs

- we can associate a weight w_{ij} for each edge $(i,j) \in E$.
- the weights *w_{ij}* correspond to a (typically sparse) matrix **W**
- the rows and columns of W correspond to vertices and its entries to edges
- **W** is symmetric if *G* is undirected

└─ Matrices = Graphs

Matrices are graphs

- we can associate a weight w_{ij} for each edge $(i,j) \in E$.
- the weights *w_{ij}* correspond to a (typically sparse) matrix **W**
- the rows and columns of W correspond to vertices and its entries to edges
- **W** is symmetric if *G* is undirected
- similarly we can represent any matrix as a graph with the connectivity of the graph corresponds to the sparsity of the matrix

Letter The relationship between tensors and hypergraphs

└─ Matrices = Graphs

Its useful to connect matrices with graphs

Graphs give a natural visualization for

any mesh

Matrices allow for numerical computation on graphs

└─ Matrices = Graphs

Its useful to connect matrices with graphs

Graphs give a natural visualization for

- any mesh
- the interaction list in a molecular dynamics simulation (pairlist)

Matrices allow for numerical computation on graphs

└─ Matrices = Graphs

Its useful to connect matrices with graphs

Graphs give a natural visualization for

- any mesh
- the interaction list in a molecular dynamics simulation (pairlist)

Matrices allow for numerical computation on graphs

iterative numerical solvers, often compute

$$\mathbf{x}^k = \mathbf{A} \cdot \mathbf{x}^{k-1}$$

└─ Matrices = Graphs

Its useful to connect matrices with graphs

Graphs give a natural visualization for

- any mesh
- the interaction list in a molecular dynamics simulation (pairlist)

Matrices allow for numerical computation on graphs

iterative numerical solvers, often compute

$$\mathbf{x}^k = \mathbf{A} \cdot \mathbf{x}^{k-1}$$

 direct particle methods may be written in above form (for certain definition of ·), where x are particles and A corresponds to forces

Letter The relationship between tensors and hypergraphs

└─ Matrices = Graphs

Semirings

We typically work with the semiring $c + a \cdot b$, but we could employ the tropical semiring min(c, a + b)

■ let $\mathbf{y} = y \oplus \mathbf{A} \odot \mathbf{x}$ denote matrix vector multiplication on the tropical semiring, so

$$y_i = \min(y_i, \min_k(A_{ik} + x_k))$$

— The relationship between tensors and hypergraphs

└─ Matrices = Graphs

Semirings

We typically work with the semiring $c + a \cdot b$, but we could employ the tropical semiring min(c, a + b)

■ let y = y ⊕ A ⊙ x denote matrix vector multiplication on the tropical semiring, so

$$y_i = \min(y_i, \min_k(A_{ik} + x_k))$$

x^k = A ⊙ x^{k-1} gives the shortest paths xⁿ between one vertex and the rest (Ford-Fulkerson algorithm)

Letter The relationship between tensors and hypergraphs

└─ Matrices = Graphs

Semirings

We typically work with the semiring $c + a \cdot b$, but we could employ the tropical semiring min(c, a + b)

■ let y = y ⊕ A ⊙ x denote matrix vector multiplication on the tropical semiring, so

$$y_i = \min(y_i, \min_k(A_{ik} + x_k))$$

- x^k = A ⊙ x^{k-1} gives the shortest paths xⁿ between one vertex and the rest (Ford-Fulkerson algorithm)
- the closure of a matrix A is A* = I + A + A²..., for a numerical A under the (+, ·) semiring, it can be computed by Gaussian Elimination A* = (I A)⁻¹

— The relationship between tensors and hypergraphs

└─ Matrices = Graphs

Semirings

We typically work with the semiring $c + a \cdot b$, but we could employ the tropical semiring min(c, a + b)

■ let y = y ⊕ A ⊙ x denote matrix vector multiplication on the tropical semiring, so

$$y_i = \min(y_i, \min_k(A_{ik} + x_k))$$

- x^k = A ⊙ x^{k-1} gives the shortest paths xⁿ between one vertex and the rest (Ford-Fulkerson algorithm)
- the closure of a matrix A is A* = I + A + A²..., for a numerical A under the (+, ·) semiring, it can be computed by Gaussian Elimination A* = (I A)⁻¹
- the closure of a matrix **B** corresponding to graph *G* on the tropical semiring $\mathbf{B}^* = \mathbf{I} \oplus \mathbf{B} \oplus \mathbf{B}^2 \dots$ gives all shortest paths in *G*

- The relationship between tensors and hypergraphs

└─ Tensors = Hypergraphs

Tensors are hypergraphs

Consider a $n \times n \times m \times m$ tensor

which is symmetric in *ab* and *ij*

■ represent it as a directed hypergraph H = (V, E) with edges of the form ({a, b}, {i, j}) ∈ E

L The relationship between tensors and hypergraphs

└─ Tensors = Hypergraphs

Tensors are hypergraphs

Consider a $n \times n \times m \times m$ tensor

which is symmetric in *ab* and *ij*

- represent it as a directed hypergraph H = (V, E) with edges of the form ({a, b}, {i,j}) ∈ E
- H automatically expresses the symmetry of T since sets are invariant under permutation of elements

L The relationship between tensors and hypergraphs

└─ Tensors = Hypergraphs

Tensors are hypergraphs

Consider a $n \times n \times m \times m$ tensor

which is symmetric in *ab* and *ij*

■ represent it as a directed hypergraph H = (V, E) with edges of the form ({a, b}, {i, j}) ∈ E

T^{ab}

- H automatically expresses the symmetry of T since sets are invariant under permutation of elements
- If we can divide V into two disjoint subsets $V_1 \cup V_2 = V$ (occupied and unoccupied orbitals), where all edges go from V_1 to V_2 , H is a bipartite hypergraph

L The relationship between tensors and hypergraphs

└─ Tensors = Hypergraphs

Tensors are hypergraphs

Consider a $n \times n \times m \times m$ tensor

which is symmetric in *ab* and *ij*

■ represent it as a directed hypergraph H = (V, E) with edges of the form ({a, b}, {i, j}) ∈ E

T^{ab}

- H automatically expresses the symmetry of T since sets are invariant under permutation of elements
- If we can divide V into two disjoint subsets $V_1 \cup V_2 = V$ (occupied and unoccupied orbitals), where all edges go from V_1 to V_2 , H is a bipartite hypergraph
- We can represent any fully-symmetric tensor of dimension d as a hypergraph where all edges have cardinality d

└─ Tensors = Hypergraphs

Coupled Cluster as a hypergraph computation

Coupled Cluster iteratively refines the bipartite hypergraph ${\cal H}$ corresponding to ${\bf T}$

the integrals V may also be interpreted as hyperedges in H, but not bipartite

└─ Tensors = Hypergraphs

Coupled Cluster as a hypergraph computation

Coupled Cluster iteratively refines the bipartite hypergraph ${\cal H}$ corresponding to ${\bf T}$

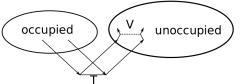
- the integrals V may also be interpreted as hyperedges in H, but not bipartite
- ${\color{black}\bullet}$ each diagram is a contribution to a path through ${\color{black}V}$ of the form ${\color{black}T}$

└─ Tensors = Hypergraphs

Coupled Cluster as a hypergraph computation

Coupled Cluster iteratively refines the bipartite hypergraph ${\cal H}$ corresponding to ${\bf T}$

- the integrals V may also be interpreted as hyperedges in H, but not bipartite
- each diagram is a contribution to a path through V of the form T
- for instance $Z_{ij}^{ab} = \sum_{cd} V_{cd}^{ab} T_{ij}^{cd}$ may be visualized as

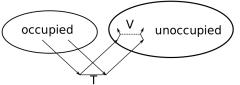


 \Box Tensors = Hypergraphs

Coupled Cluster as a hypergraph computation

Coupled Cluster iteratively refines the bipartite hypergraph ${\cal H}$ corresponding to ${\bf T}$

- the integrals V may also be interpreted as hyperedges in H, but not bipartite
- each diagram is a contribution to a path through V of the form T
- for instance $Z_{ij}^{ab} = \sum_{cd} V_{cd}^{ab} T_{ij}^{cd}$ may be visualized as



 Speculation: switch semirings and have CC compute shortest paths in a hypergraph

Fast symmetric contractions

└─ Simple symmetric contractions

Symmetric matrix times vector

Now lets consider a special case of semirings: commutative rings • Let **b** be a vector of length *n*

Fast symmetric contractions

Simple symmetric contractions

Symmetric matrix times vector

Now lets consider a special case of semirings: commutative rings

- Let **b** be a vector of length *n*
- Let **A** be a *n*-by-*n* symmetric matrix with elements

$$A_{ij} = A_{ji}$$

Fast symmetric contractions

Simple symmetric contractions

Symmetric matrix times vector

Now lets consider a special case of semirings: commutative rings

- Let **b** be a vector of length *n*
- Let **A** be a *n*-by-*n* symmetric matrix with elements

$$A_{ij} = A_{ji}$$

Typically, we say the symmetry of **A** is broken and compute

$$c_i = \sum_{j=1}^n A_{ij} \cdot b_j$$

Fast symmetric contractions

Simple symmetric contractions

Symmetric matrix times vector

Now lets consider a special case of semirings: commutative rings

- Let b be a vector of length n
- Let **A** be a *n*-by-*n* symmetric matrix with elements

$$A_{ij} = A_{ji}$$

Typically, we say the symmetry of A is broken and compute

$$c_i = \sum_{j=1}^n A_{ij} \cdot b_j$$

 If · is an operator on a ring, we can use half the number of multiplications

$$c_i = \sum_{j=1}^n A_{ij} \cdot (b_i + b_j) - \left(\sum_{j=1}^n A_{ij}\right) b_i$$

Fast tensor contractions for Coupled Cluster $\qquad 20/\ 28$

Fast symmetric contractions

Simple symmetric contractions

Symmetrized product

We can apply a similar trick for the symmetrized outer product

- Let a and b be vectors of length n
- Compute symmetric matrix A

$$\mathbf{C} = \mathbf{a} \cdot \mathbf{b}^T + \mathbf{b} \cdot \mathbf{a}^T$$
$$C_{i \le j} = a_i \cdot b_j + a_j \cdot b_i$$

If
 is an operator on a commutative ring, we can use half the multiplications,

$$\mathcal{C}_{i\leq j}=(\mathsf{a}_i+\mathsf{a}_j)\cdot(\mathsf{b}_i+\mathsf{b}_j)-\mathsf{a}_i\cdot\mathsf{b}_i-\mathsf{a}_j\cdot\mathsf{b}_j.$$

Fast symmetric contractions

Simple symmetric contractions

A commutative ring of symmetric matrices

Given *n*-by-*n* symmetric matrices A, B define commutative ring \otimes

$$\mathbf{A}\otimes\mathbf{B}=\mathbf{A}\cdot\mathbf{B}+\mathbf{B}\cdot\mathbf{A}$$

note that the product is still symmetric, unlike **A** · **B**

Fast symmetric contractions

Simple symmetric contractions

A commutative ring of symmetric matrices

Given *n*-by-*n* symmetric matrices A, B define commutative ring \otimes

$$\mathbf{A} \otimes \mathbf{B} = \mathbf{A} \cdot \mathbf{B} + \mathbf{B} \cdot \mathbf{A}$$

 \blacksquare note that the product is still symmetric, unlike $\textbf{A} \cdot \textbf{B}$

• the operator \otimes may be applied using $n^3/3! = n^3/6$ multiplications

$$w_{i} = \sum_{k=1}^{n} A_{ik} \quad x_{i} = \sum_{k=1}^{n} B_{ik} \quad y_{i} = \sum_{k=1}^{n} A_{ik} \cdot B_{ik}$$
$$Z_{i \le j \le k} = (A_{ij} + A_{ik} + A_{jk}) \cdot (B_{ij} + B_{ik} + B_{jk})$$
$$C_{i \le j} = C_{i \le j} + \sum_{k=1}^{n} Z_{ijk} - n \cdot A_{ij} \cdot B_{ij} - y_{i} - y_{j} - w_{i} \cdot B_{ij} - A_{ij} \cdot x_{j}$$

Fast symmetric contractions

General symmetric contractions

General fast symmetric tensor contractions

Given *fully* symmetric **A**, **B**, and **C**, compute $\mathbf{C} = A \otimes B$

$$C_{i_1\ldots i_{s+t}} = \sum_{((j_1\ldots j_s),(l_1\ldots l_t))\in\chi_s(i_1\ldots i_{s+t})} \left(\sum_{k_1\ldots k_v} A_{j_1\ldots j_s}^{k_1\ldots k_v} \cdot B_{k_1\ldots k_v}^{l_1\ldots l_t}\right).$$

Typically computed by (implicitly) forming partially-symmetric $ar{f C}$

$$ar{\mathcal{C}}_{j_1\ldots j_s}^{l_1\ldots l_t} = \sum_{k_1\ldots k_v} \mathcal{A}_{j_1\ldots j_s}^{k_1\ldots k_v} \cdot \mathcal{B}_{k_1\ldots k_v}^{l_1\ldots l_t}.$$

This requires $\frac{n^{s+t+\nu}}{s!t!\nu!}$ multiplications, via fully symmetric intermediates it becomes,

$$\binom{n}{s+t+v} \approx \frac{n^{s+t+v}}{(s+t+v)!}$$

Fast symmetric contractions

General symmetric contractions

General symmetric contraction algorithm

Compute $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$, using the notation $(j_1 \dots j_s, k_1 \dots k_t) \in \{i_1 \dots i_{s+t+\nu}\}$ to denote a partition into two disjoint sets:

$$\begin{split} Z_{i_{1} \leq \dots i_{s+t+\nu}} &= \sum_{(j_{1} \dots j_{s}, k_{1} \dots k_{\nu}) \in \{i_{1} \dots i_{s+t+\nu}\}} A_{j_{1} \dots j_{s}}^{k_{1} \dots k_{\nu}} \cdot \sum_{(l_{1} \dots l_{t}, k_{1} \dots k_{\nu}) \in \{i_{1} \dots i_{s+t+\nu}\}} B_{k_{1} \dots k_{\nu}}^{h_{1} \dots l_{t}} \\ W_{i_{1} \leq \dots i_{s+t+\nu-1}} &= \sum_{(j_{1} \dots j_{s}, k_{1} \dots k_{\nu}) \in \{i_{1} \dots i_{s+t+\nu-1}\}} A_{j_{1} \dots j_{s}}^{k_{1} \dots k_{\nu}} \cdot \sum_{(l_{1} \dots l_{t}, k_{1} \dots k_{\nu}) \in \{i_{1} \dots i_{s+t+\nu-1}\}} B_{k_{1} \dots k_{\nu}}^{h_{1} \dots h_{t}} \\ V_{i_{1} \leq \dots i_{s+t+\nu-1}} &= \sum_{(j_{1} \dots j_{s}, k_{1} \dots k_{\nu-1}) \in \{i_{1} \dots i_{s+t+\nu-1}\}} \sum_{k_{\nu}} A_{j_{1} \dots j_{s}}^{k_{1} \dots k_{\nu}} \\ \cdot \sum_{(l_{1} \dots l_{t}, k_{1} \dots k_{\nu-1}) \in \{i_{1} \dots i_{s+t+\nu-1}\}} \sum_{k_{\nu}} B_{k_{1} \dots k_{\nu}}^{h_{1} \dots h_{t}} \\ C_{i_{1} \dots i_{s+t}} &= \sum_{k_{1} \dots k_{\nu}} Z_{i_{1} \dots i_{s+t}, k_{1}, \dots k_{\nu} - n} \cdot \sum_{k_{1} \dots k_{\nu-1}} W_{i_{1} \dots i_{s+t}, k_{1}, \dots k_{\nu-1}} \\ - \sum_{k_{1} \dots k_{\nu-1}} V_{i_{1} \dots i_{s+t}, k_{1}, \dots k_{\nu-1}} V_{i_{1} \dots i_{s+t}, k_{1}, \dots k_{\nu-1}} \end{split}$$

Fast symmetric contractions

General symmetric contractions

Any tensor is a fully symmetric tensor

Realizing that a vector is a symmetric tensor, we may express any tensor as a nested symmetric tensor

A nonsymmetric matrix A_{ij} is a vector of vectors ā where each element ā = ā_i is a vector with ā_i = A_{ij}

Fast symmetric contractions

General symmetric contractions

Any tensor is a fully symmetric tensor

Realizing that a vector is a symmetric tensor, we may express any tensor as a nested symmetric tensor

- A nonsymmetric matrix A_{ij} is a vector of vectors ā where each element ā = ā_i is a vector with ā_j = A_{ij}
- The partially symmetric matrix C^{ab}_{ij} may then be written as a two-level nest of symmetric matrices

Fast symmetric contractions

General symmetric contractions

Any tensor is a fully symmetric tensor

Realizing that a vector is a symmetric tensor, we may express any tensor as a nested symmetric tensor

- A nonsymmetric matrix A_{ij} is a vector of vectors ā where each element ā = ā_i is a vector with ā_j = A_{ij}
- The partially symmetric matrix C^{ab}_{ij} may then be written as a two-level nest of symmetric matrices
- Therefore, we can compute a contraction like

$$C_{abij} = P(a, b) \sum_{ck} A_{acik} \cdot B_{cbkj}$$

where **A** is symmetric in *ac*, **B** is symmetric in *cb* in $n^6/6$ operations

Fast symmetric contractions

General symmetric contractions

Any tensor is a fully symmetric tensor

Realizing that a vector is a symmetric tensor, we may express any tensor as a nested symmetric tensor

- A nonsymmetric matrix A_{ij} is a vector of vectors \bar{a} where each element $\bar{\bar{a}} = \bar{a}_i$ is a vector with $\bar{\bar{a}}_j = A_{ij}$
- The partially symmetric matrix C^{ab}_{ij} may then be written as a two-level nest of symmetric matrices
- Therefore, we can compute a contraction like

$$C_{abij} = P(a, b) \sum_{ck} A_{acik} \cdot B_{cbkj}$$

where **A** is symmetric in *ac*, **B** is symmetric in *cb* in $n^6/6$ operations

 Unfortunately contractions of the above form do not exist in Coupled Cluster theory and cannot be written using raised and lowered index notation

Fast symmetric contractions

General symmetric contractions

Limited application of fast symmetric contraction to Coupled Cluster

For some CC contractions, we can at least gain a factor of two

Consider the contraction

$$Z_{ij}^{ab} = P(i,j)P(a,b)\sum_{klcd}T_{ik}^{ac}V_{cd}^{kl}T_{lj}^{db}$$

Fast symmetric contractions

General symmetric contractions

Limited application of fast symmetric contraction to Coupled Cluster

For some CC contractions, we can at least gain a factor of two

Consider the contraction

$$Z_{ij}^{ab} = P(i,j)P(a,b)\sum_{klcd}T_{ik}^{ac}V_{cd}^{kl}T_{lj}^{db}$$

• which may be done by forming a nonsymmetric(!) W_{il}^{ad}

$$W_{il}^{ad} = \sum_{ck} T_{ik}^{ac} V_{cd}^{kl}$$

Fast symmetric contractions

General symmetric contractions

Limited application of fast symmetric contraction to Coupled Cluster

For some CC contractions, we can at least gain a factor of two

Consider the contraction

$$Z^{ab}_{ij} = P(i,j)P(a,b)\sum_{klcd}T^{ac}_{ik}V^{kl}_{cd}T^{db}_{lj}$$

• which may be done by forming a nonsymmetric(!) W_{il}^{ad}

$$W_{il}^{ad} = \sum_{ck} T_{ik}^{ac} V_{cd}^{kl}$$

Defining vector \overline{W}^a with elements $W_{il}^{ad} \in \overline{W}^a$ for all d, i, l, and similarly vector \overline{V}_c and symmetric matrix \overline{T}^{ac} , we may compute $\overline{\mathbf{W}} = \overline{\mathbf{T}} \otimes \overline{\mathbf{V}}$,

$$ar{W}^a = \sum_c ar{T}^{ac} \cdot ar{V}_c$$

using half the multiplications, resulting in $n^2/2$ calls to subcontraction

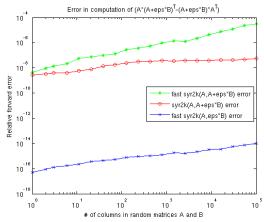
$$ilde{W}^d_{il} = \sum_k ilde{T}_{ik} \cdot ilde{V}^k_d$$

Fast symmetric contractions

└─ Floating point paranoia

Disclaimer: numerical characteristics

The fast contraction algorithms have different numerical characteristics in floating-point precision



Rewind

Stepping back from hypergraphs and rings...

 Cyclops Tensor Framework is available at ctf.cs.berkeley.edu and github.com/solomonik/ctf

Rewind

Stepping back from hypergraphs and rings...

- Cyclops Tensor Framework is available at ctf.cs.berkeley.edu and github.com/solomonik/ctf
- CTF v1.0 was released in December and the master branch is even faster

Rewind

Stepping back from hypergraphs and rings...

- Cyclops Tensor Framework is available at ctf.cs.berkeley.edu and github.com/solomonik/ctf
- CTF v1.0 was released in December and the master branch is even faster
- Looking for collaborative effort on CCSD(T) and CCSDT(Q) methods

Rewind

Stepping back from hypergraphs and rings...

- Cyclops Tensor Framework is available at ctf.cs.berkeley.edu and github.com/solomonik/ctf
- CTF v1.0 was released in December and the master branch is even faster
- Looking for collaborative effort on CCSD(T) and CCSDT(Q) methods
- Hopefully the hypergraph and fast contraction algorithms lead to some insight towards better understanding of CC

Collaborators and acknowledgements

Collaborators:

- Devin Matthews, UT Austin (contributions to CTF, teaching me CC, and development of Aquarius on top of CTF)
- Jeff Hammond, Argonne National Laboratory (initiated project, provides continuing advice, and runs NWChem for me when my patience runs out)

James Demmel and Kathy Yelick, UC Berkeley (advising)
Grants:

• Krell DOE Computational Science Graduate Fellowship

Backup slides