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Cyclops Tensor Framework

Aim

Motivation and goals

Cyclops (cyclic-operations) Tensor Framework

provide primitives for distributed memory tensor contractions

take advantage of thread (two-level) parallelism

expose a simple domain specific language for contractions

allow for efficient tensor redistribution and slicing

exploit permutational tensor symmetry efficiently

uses only MPI, BLAS, and OpenMP and is a library
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Cyclops Tensor Framework

Interface

Define a parallel world

CTF relies on MPI (Message Passing Interface) for multiprocessor
parallelism

a set of processors in MPI corresponds to a communicator
(MPI Comm)

MPI COMM WORLD is the default communicators
containing all processes

CTF World dw(comm) defines an instance of CTF on any
MPI communicator
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Cyclops Tensor Framework

Interface

Define a tensor

A tensor is a multidimensional array, e.g.

T ab
ij

where T is m ×m × n × n antisymmetric in ab and in ij

CTF Tensor T(4,{m,m,n,n},{AS,NS,AS,NS},dw)

an ’AS’ dimension is antisymmetric with the next

symmetric (SY) and symmetric-hollow (SH) are also possible

the first dimension of the tensor is mapped linearly onto
memory

there are also obvious derived types for CTF Tensor:
CTF Matrix, CTF Vector, CTF Scalar
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Cyclops Tensor Framework

Interface

Contract tensors

CTF can express a tensor contraction like

Z ab
ij = Z ab

ij + 2 · P(a, b)
∑
k

F a
k · T kb

ij

where P(a, b) implies antisymmetrization of index pair ab,

Z[” abij ”] += 2.0∗F[”ak”]∗T[”kbij”]

P(a, b) is applied implicitly if Z is antisymmetric in ab

Z,F,T should all be defined on the same world and all
processes in the world must call the contraction bulk
synchronously

the beginning of the end of all for loops...
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Cyclops Tensor Framework

Interface

Access and write tensor data

CTF takes away your data pointer
Access arbitrary sparse subsets of the tensor by global index
(coordinate format)

T.write( int ∗ indices , double ∗ data) (also possible to scale)
T.read( int ∗ indices , double ∗ data) (also possible to scale)

Matlab submatrix notation: A[j : k , l : m]

T. slice ( int ∗ offsets , int ∗ ends) returns the subtensor
T. slice ( int corner off , int corner end) does the same
can also sum a subtensor from one tensor with a subtensor of
another tensor
different subworlds can read different subtensors simultaneously

Extract a subtensor of any permutation of the tensor

given mappings P,Q, does B[i , j ] = A[P[i ],Q[j ]] via permute()
P and Q may access only subsets of A (if B is smaller)
B may be defined on subworlds on the world on which A is
defined and each subworld may specify different P and Q
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Cyclops Tensor Framework

Interface

Write a Coupled Cluster code

Extracted from Aquarius (Devin Matthews’ code)

FMI["mi"] += 0.5*WMNEF["mnef"]*T(2)["efin"];

WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T(2)["efij"];

FAE["ae"] -= 0.5*WMNEF["mnef"]*T(2)["afmn"];

WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T(2)["afin"];

Z(2)["abij"] = WMNEF["ijab"];

Z(2)["abij"] += FAE["af"]*T(2)["fbij"];

Z(2)["abij"] -= FMI["ni"]*T(2)["abnj"];

Z(2)["abij"] += 0.5*WABEF["abef"]*T(2)["efij"];

Z(2)["abij"] += 0.5*WMNIJ["mnij"]*T(2)["abmn"];

Z(2)["abij"] -= WAMEI["amei"]*T(2)["ebmj"];
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Cyclops Tensor Framework

Interface

Write more Coupled Cluster code

Extracted from Aquarius (Devin Matthews’ code)

Z(1)["ai"] += 0.25*WMNEF["mnef"]*T(3)["aefimn"];

Z(2)["abij"] += 0.5*WAMEF["bmef"]*T(3)["aefijm"];

Z(2)["abij"] -= 0.5*WMNEJ["mnej"]*T(3)["abeinm"];

Z(2)["abij"] += FME["me"]*T(3)["abeijm"];

Z(3)["abcijk"] = WABEJ["bcek"]*T(2)["aeij"];

Z(3)["abcijk"] -= WAMIJ["bmjk"]*T(2)["acim"];

Z(3)["abcijk"] += FAE["ce"]*T(3)["abeijk"];

Z(3)["abcijk"] -= FMI["mk"]*T(3)["abcijm"];

Z(3)["abcijk"] += 0.5*WABEF["abef"]*T(3)["efcijk"];

Z(3)["abcijk"] += 0.5*WMNIJ["mnij"]*T(3)["abcmnk"];

Z(3)["abcijk"] -= WAMEI["amei"]*T(3)["ebcmjk"];
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Cyclops Tensor Framework

Performance

Run your Coupled Cluster code on a IBM supercomputer

CCSD up to 55 water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

 4

 8

 16

 32

 64

 128

 256

 512

 1024

512 1024 2048 4096 8192 16384 32768

Te
ra

flo
ps

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 10

 20

 30

 40

 50

 60

512 1024 2048 4096 8192 16384 32768

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

9 / 28 Edgar Solomonik Fast tensor contractions for Coupled Cluster 9/ 28



Fast tensor contractions for Coupled Cluster 10/ 28

Cyclops Tensor Framework

Performance

Run your Coupled Cluster code on the computer next door
(Edison)

CCSD up to 50 water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ
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Cyclops Tensor Framework

Performance

Run your Coupled Cluster code faster than NWChem

NWChem is a distributed-memory quantum chemistry method
suite

provides CCSD and CCSDT

uses Global Arrays a Partitioned Global Address Space
(PGAS) backend for tensor contractions

derivation automatically done by Tensor Contraction Engine
(TCE)

CCSD performance on Edison (thanks to Jeff Hammond for
building NWChem and collecting data)

NWChem 40 water molecules on 1024 nodes: 44 min

CTF 40 water molecules on 1024 nodes: 9 min

11 / 28 Edgar Solomonik Fast tensor contractions for Coupled Cluster 11/ 28



Fast tensor contractions for Coupled Cluster 11/ 28

Cyclops Tensor Framework

Performance

Run your Coupled Cluster code faster than NWChem

NWChem is a distributed-memory quantum chemistry method
suite

provides CCSD and CCSDT

uses Global Arrays a Partitioned Global Address Space
(PGAS) backend for tensor contractions

derivation automatically done by Tensor Contraction Engine
(TCE)

CCSD performance on Edison (thanks to Jeff Hammond for
building NWChem and collecting data)

NWChem 40 water molecules on 1024 nodes: 44 min

CTF 40 water molecules on 1024 nodes: 9 min

11 / 28 Edgar Solomonik Fast tensor contractions for Coupled Cluster 11/ 28



Fast tensor contractions for Coupled Cluster 11/ 28

Cyclops Tensor Framework

Performance

Run your Coupled Cluster code faster than NWChem

NWChem is a distributed-memory quantum chemistry method
suite

provides CCSD and CCSDT

uses Global Arrays a Partitioned Global Address Space
(PGAS) backend for tensor contractions

derivation automatically done by Tensor Contraction Engine
(TCE)

CCSD performance on Edison (thanks to Jeff Hammond for
building NWChem and collecting data)

NWChem 40 water molecules on 1024 nodes: 44 min

CTF 40 water molecules on 1024 nodes: 9 min

11 / 28 Edgar Solomonik Fast tensor contractions for Coupled Cluster 11/ 28



Fast tensor contractions for Coupled Cluster 11/ 28

Cyclops Tensor Framework

Performance

Run your Coupled Cluster code faster than NWChem

NWChem is a distributed-memory quantum chemistry method
suite

provides CCSD and CCSDT

uses Global Arrays a Partitioned Global Address Space
(PGAS) backend for tensor contractions

derivation automatically done by Tensor Contraction Engine
(TCE)

CCSD performance on Edison (thanks to Jeff Hammond for
building NWChem and collecting data)

NWChem 40 water molecules on 1024 nodes: 44 min

CTF 40 water molecules on 1024 nodes: 9 min

11 / 28 Edgar Solomonik Fast tensor contractions for Coupled Cluster 11/ 28



Fast tensor contractions for Coupled Cluster 11/ 28

Cyclops Tensor Framework

Performance

Run your Coupled Cluster code faster than NWChem

NWChem is a distributed-memory quantum chemistry method
suite

provides CCSD and CCSDT

uses Global Arrays a Partitioned Global Address Space
(PGAS) backend for tensor contractions

derivation automatically done by Tensor Contraction Engine
(TCE)

CCSD performance on Edison (thanks to Jeff Hammond for
building NWChem and collecting data)

NWChem 40 water molecules on 1024 nodes: 44 min

CTF 40 water molecules on 1024 nodes: 9 min
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Cyclops Tensor Framework

Performance

Ongoing development in CTF

Lots of room for improvement, ongoing effort

Multi-contraction scheduler being developed by Richard Lin
(UCB)

Better performance models and their external exposure

Improvements to tensor slicing and usage thereof for
CCSD(T) and CCSDT(Q)

Faster symmetric tensor contraction algorithms...
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The relationship between tensors and hypergraphs

Hypergraphs?

Graphs and hypergraphs

Examples of a undirected graph and directed graph

Examples of a undirected hypergraph and directed hypergraph
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The relationship between tensors and hypergraphs

Matrices = Graphs

Matrices are graphs

A graph G = (V ,E ) is a set of vertices V and a set of edges E .

we can associate a weight wij for each edge (i , j) ∈ E .

the weights wij correspond to a (typically sparse) matrix W

the rows and columns of W correspond to vertices and its
entries to edges

W is symmetric if G is undirected

similarly we can represent any matrix as a graph with the
connectivity of the graph corresponds to the sparsity of the
matrix
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The relationship between tensors and hypergraphs

Matrices = Graphs

Its useful to connect matrices with graphs

Graphs give a natural visualization for

any mesh

the interaction list in a molecular dynamics simulation
(pairlist)

Matrices allow for numerical computation on graphs

iterative numerical solvers, often compute

xk = A · xk−1

direct particle methods may be written in above form (for
certain definition of ·), where x are particles and A
corresponds to forces

15 / 28 Edgar Solomonik Fast tensor contractions for Coupled Cluster 15/ 28



Fast tensor contractions for Coupled Cluster 15/ 28

The relationship between tensors and hypergraphs

Matrices = Graphs

Its useful to connect matrices with graphs

Graphs give a natural visualization for

any mesh

the interaction list in a molecular dynamics simulation
(pairlist)

Matrices allow for numerical computation on graphs

iterative numerical solvers, often compute

xk = A · xk−1

direct particle methods may be written in above form (for
certain definition of ·), where x are particles and A
corresponds to forces

15 / 28 Edgar Solomonik Fast tensor contractions for Coupled Cluster 15/ 28



Fast tensor contractions for Coupled Cluster 15/ 28

The relationship between tensors and hypergraphs

Matrices = Graphs

Its useful to connect matrices with graphs

Graphs give a natural visualization for

any mesh

the interaction list in a molecular dynamics simulation
(pairlist)

Matrices allow for numerical computation on graphs

iterative numerical solvers, often compute

xk = A · xk−1

direct particle methods may be written in above form (for
certain definition of ·), where x are particles and A
corresponds to forces

15 / 28 Edgar Solomonik Fast tensor contractions for Coupled Cluster 15/ 28



Fast tensor contractions for Coupled Cluster 15/ 28

The relationship between tensors and hypergraphs

Matrices = Graphs

Its useful to connect matrices with graphs

Graphs give a natural visualization for

any mesh

the interaction list in a molecular dynamics simulation
(pairlist)

Matrices allow for numerical computation on graphs

iterative numerical solvers, often compute

xk = A · xk−1

direct particle methods may be written in above form (for
certain definition of ·), where x are particles and A
corresponds to forces

15 / 28 Edgar Solomonik Fast tensor contractions for Coupled Cluster 15/ 28



Fast tensor contractions for Coupled Cluster 16/ 28

The relationship between tensors and hypergraphs

Matrices = Graphs

Semirings

We typically work with the semiring c + a · b, but we could employ
the tropical semiring min(c , a + b)

let y = y ⊕ A� x denote matrix vector multiplication on the
tropical semiring, so

yi = min(yi ,min
k

(Aik + xk))

xk = A� xk−1 gives the shortest paths xn between one vertex
and the rest (Ford-Fulkerson algorithm)

the closure of a matrix A is A∗ = I + A + A2 . . ., for a
numerical A under the (+, ·) semiring, it can be computed by
Gaussian Elimination A∗ = (I− A)−1

the closure of a matrix B corresponding to graph G on the
tropical semiring B∗ = I⊕ B⊕ B2 . . . gives all shortest paths
in G
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The relationship between tensors and hypergraphs

Tensors = Hypergraphs

Tensors are hypergraphs

Consider a n × n ×m ×m tensor

T ab
ij

which is symmetric in ab and ij

represent it as a directed hypergraph H = (V ,E ) with edges
of the form ({a, b}, {i , j}) ∈ E

H automatically expresses the symmetry of T since sets are
invariant under permutation of elements

If we can divide V into two disjoint subsets V1 ∪ V2 = V
(occupied and unoccupied orbitals), where all edges go from
V1 to V2, H is a bipartite hypergraph

We can represent any fully-symmetric tensor of dimension d
as a hypergraph where all edges have cardinality d
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The relationship between tensors and hypergraphs

Tensors = Hypergraphs

Coupled Cluster as a hypergraph computation

Coupled Cluster iteratively refines the bipartite hypergraph H
corresponding to T

the integrals V may also be interpreted as hyperedges in H,
but not bipartite

each diagram is a contribution to a path through V of the
form T

for instance Z ab
ij =

∑
cd V

ab
cd T

cd
ij may be visualized as

Speculation: switch semirings and have CC compute shortest
paths in a hypergraph
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Fast symmetric contractions

Simple symmetric contractions

Symmetric matrix times vector

Now lets consider a special case of semirings: commutative rings

Let b be a vector of length n

Let A be a n-by-n symmetric matrix with elements

Aij = Aji

Typically, we say the symmetry of A is broken and compute

ci =
n∑

j=1

Aij · bj

If · is an operator on a ring, we can use half the number of
multiplications

ci =
n∑

j=1

Aij · (bi + bj)−

 n∑
j=1

Aij

 bi
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Fast symmetric contractions

Simple symmetric contractions

Symmetrized product

We can apply a similar trick for the symmetrized outer product

Let a and b be vectors of length n

Compute symmetric matrix A

C = a · bT + b · aT

Ci≤j = ai · bj + aj · bi

If · is an operator on a commutative ring, we can use half the
multiplications,

Ci≤j = (ai + aj) · (bi + bj)− ai · bi − aj · bj .
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Fast symmetric contractions

Simple symmetric contractions

A commutative ring of symmetric matrices

Given n-by-n symmetric matrices A,B define commutative ring ⊗

A⊗ B = A · B + B · A

note that the product is still symmetric, unlike A · B

the operator ⊗ may be applied using n3/3! = n3/6
multiplications

wi =
n∑

k=1

Aik xi =
n∑

k=1

Bik yi =
n∑

k=1

Aik · Bik

Zi≤j≤k =(Aij + Aik + Ajk) · (Bij + Bik + Bjk)

Ci≤j =Ci≤j +
n∑

k=1

Zijk − n · Aij · Bij − yi − yj − wi · Bij − Aij · xj
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Fast symmetric contractions

General symmetric contractions

General fast symmetric tensor contractions

Given fully symmetric A, B, and C, compute C = A⊗ B

Ci1...is+t =
∑

((j1...js),(l1...lt))∈χs(i1...is+t)

∑
k1...kv

Ak1...kv
j1...js

· B l1...lt
k1...kv

 .

Typically computed by (implicitly) forming partially-symmetric C̄

C̄ l1...lt
j1...js

=
∑
k1...kv

Ak1...kv
j1...js

· B l1...lt
k1...kv

.

This requires ns+t+v

s!t!v ! multiplications, via fully symmetric
intermediates it becomes,(

n

s + t + v

)
≈ ns+t+v

(s + t + v)!
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Fast symmetric contractions

General symmetric contractions

General symmetric contraction algorithm

Compute C = A · B, using the notation (j1 . . . js , k1 . . . kt) ∈ {i1 . . . is+t+v} to
denote a partition into two disjoint sets:

Zi1≤...is+t+v =
∑

(j1...js ,k1...kv )∈{i1...is+t+v}

Ak1...kv
j1...js

·
∑

(l1...lt ,k1...kv )∈{i1...is+t+v}

B l1...lt
k1...kv

Wi1≤...is+t+v−1 =
∑

(j1...js ,k1...kv )∈{i1...is+t+v−1}

Ak1...kv
j1...js

·
∑

(l1...lt ,k1...kv )∈{i1...is+t+v−1}

B l1...lt
k1...kv

Vi1≤...is+t+v−1 =
∑

(j1...js ,k1...kv−1)∈{i1...is+t+v−1}

∑
kv

Ak1...kv
j1...js

·
∑

(l1...lt ,k1...kv−1)∈{i1...is+t+v−1}

∑
kv

B l1...lt
k1...kv

Ci1...is+t =
∑

k1...kv

Zi1...is+t ,k1,...kv − n ·
∑

k1...kv−1

Wi1...is+t ,k1,...kv−1

−
∑

k1...kv−1

Vi1...,is+t ,k1,...kv−1
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Fast symmetric contractions

General symmetric contractions

Any tensor is a fully symmetric tensor

Realizing that a vector is a symmetric tensor, we may express any
tensor as a nested symmetric tensor

A nonsymmetric matrix Aij is a vector of vectors ā where each
element ¯̄a = āi is a vector with ¯̄aj = Aij

The partially symmetric matrix C ab
ij may then be written as a

two-level nest of symmetric matrices
Therefore, we can compute a contraction like

Cabij = P(a, b)
∑
ck

Aacik · Bcbkj

where A is symmetric in ac , B is symmetric in cb in n6/6
operations
Unfortunately contractions of the above form do not exist in
Coupled Cluster theory and cannot be written using raised
and lowered index notation
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Fast symmetric contractions

General symmetric contractions

Limited application of fast symmetric contraction to
Coupled Cluster

For some CC contractions, we can at least gain a factor of two
Consider the contraction

Z ab
ij = P(i , j)P(a, b)

∑
klcd

T ac
ik V kl

cdT
db
lj

which may be done by forming a nonsymmetric(!) W ad
il

W ad
il =

∑
ck

T ac
ik V kl

cd

Defining vector W̄ a with elements W ad
il ∈ W̄ a for all d , i , l , and similarly

vector V̄c and symmetric matrix T̄ ac , we may compute W̄ = T̄⊗ V̄,

W̄ a =
∑
c

T̄ ac · V̄c

using half the multiplications, resulting in n2/2 calls to subcontraction

W̃ d
il =

∑
k

T̃ik · Ṽ kl
d
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Fast symmetric contractions

Floating point paranoia

Disclaimer: numerical characteristics

The fast contraction algorithms have different numerical
characteristics in floating-point precision
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Conclusion

Rewind

Stepping back from hypergraphs and rings...

Cyclops Tensor Framework is available at
ctf.cs.berkeley.edu and github.com/solomonik/ctf

CTF v1.0 was released in December and the master branch is
even faster

Looking for collaborative effort on CCSD(T) and CCSDT(Q)
methods

Hopefully the hypergraph and fast contraction algorithms lead
to some insight towards better understanding of CC
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Backup slides
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