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Communication-synchronization wall

To analyze parallel algorithms, we consider costs along the critical path of
the execution schedule1

F – computation cost
W – horizontal communication cost
S – synchronization cost

We can show a commonality between
Cholesky of an n × n matrix and
n steps of a 9-pt stencil:

W · S = Ω(n2)

regardless of #processors1

1E.S., E. Carson, N. Knight, J. Demmel, TOPC 2016
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Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the n × n diamond DAG,1

F · S = Ω(n2)

In this DAG, vertices denote scalar computations in an algorithm

1C.H. Papadimitriou, J.D. Ullman, SIAM JC, 1987
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Scheduling tradeoffs of path-expander graphs

Definition ((ε, σ)-path-expander)
Graph G = (V ,E ) is a (ε, σ)-path-expander if there exists a path
(u1, . . . un) ⊂ V , such that the dependency interval [ui , ui+b]G for each i , b
has size Θ(σ(b)) and a minimum cut of size Ω(ε(b)).

Theorem (Path-expander communication lower bound)
Any parallel schedule of an algorithm with a (ε, σ)-path-expander
dependency graph about a path of length n and some b ∈ [1, n] incurs
computation (F), communication (W ), and synchronization (S) costs:

F = Ω (σ(b) · n/b) , W = Ω (ε(b) · n/b) , S = Ω (n/b) .

Corollary
If σ(b) = bd and ε(b) = bd−1, the above theorem yields,

F · Sd−1 = Ω(nd ), W · Sd−2 = Ω(nd−1).
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Synchronization-communication wall in iterative methods

The theorem can be applied to sparse iterative methods on regular grids.
For computing s applications of a (2m + 1)d -point stencil,

FSt · Sd
St = Ω

(
m2d · sd+1

)
, WSt · Sd−1

St = Ω
(
md · sd

)
while s-step methods reduce synchronization, for large s they require
asymptotically more communication.

The lower bound is attained by s-step methods when s approaches the
dimension of each processor’s local subgrid.
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A more scalable algorithm for TRSM

For Cholesky factorization with p processors, parallel schedules can attain

F = O(n3/p), W = O(n2/pδ), S = O(pδ)

for any δ = [1/2, 2/3]. Achieving similar costs for LU, QR, and the
symmetric eigenvalue problem requires some algorithmic tweaks.

triangular solve square TRSM X1 rectangular TRSM X2

LU with pivoting pairwise pivoting X3 tournament pivoting X4

QR factorization Givens on square X3 Householder on rect. X5

SVD singular values only X5 singular vectors X
Xmeans costs attained (synchronization within polylogarithmic factors).
Ongoing work on QR with column pivoting

1B. Lipshitz, MS thesis 2013
2T. Wicky, E.S., T. Hoefler, IPDPS 2017
3A. Tiskin, FGCS 2007
4E.S., J. Demmel, EuroPar 2011
5E.S., G. Ballard, T. Hoefler, J. Demmel, SPAA 2017
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New algorithms can circumvent lower bounds

For TRSM, we can achieve a lower synchronization/communication cost by
performing triangular inversion on diagonal blocks

decreases synchronization cost by O(p2/3) on p processors with respect
to known algorithms
optimal communication for any number of right-hand sides
MS thesis work by Tobias Wicky1

1T. Wicky, E.S., T. Hoefler, IPDPS 2017
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Improving scalability for iterative methods

Randomized-projection methods have potential to significantly improve
scalability over iterative Krylov subspace methods

key idea: replace sparse mat-vecs with sparse mat-muls
define n × (k + 10) Gaussian random matrix X
AX gives a good representation of the kernel of A
accuracy can be improved exponentially with q1

(AAT )qAX

many related results with high potential for efficiency (e.g. randomized
column pivoting for QR 2)

1N. Halko, P.G. Martinsson, J.A. Tropp, SIAM Review 2011
2P.G. Martinsson, G. Quintana Orti, N. Heavner. R. van de Geijn, SIAM 2017
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Avoiding communication in numerical methods

Need algorithms and methods that are more parallelizable rather than
parallel schedules of existing algorithms.
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How can we formally define an algorithm?

Formally defining a space of algorithms enables systematic exploration.

Definition (Bilinear algorithms (V. Pan, 1984))

A bilinear algorithm Λ = (F (A),F (B),F (C)) computes

c = F (C)[(F (A)Ta) ◦ (F (B)Tb)],

where a and b are inputs and ◦ is the Hadamard (pointwise) product.
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Bilinear algorithms as tensor factorizations

A bilinear algorithm corresponds to a CP tensor decomposition

ci =
R∑

r=1
F (C)

ir

(∑
j

F (A)
jr aj

)(∑
k

F (B)
kr bk

)

=
∑

j

∑
k

( R∑
r=1

F (C)
ir F (A)

jr F (B)
kr

)
ajbk

=
∑

j

∑
k

Tijkajbk where Tijk =
R∑

r=1
F (C)

ir F (A)
jr F (B)

kr

For multiplication of n × n matrices,
T is n2 × n2 × n2

classical algorithm has rank R = n3

Strassen’s algorithm has rank R ≈ nlog2(7)
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Expansion in bilinear algorithms
The communication complexity of a bilinear algorithm depends on the
amount of data needed to compute subsets of the bilinear products.

Definition (Bilinear subalgorithm)

Given Λ = (F (A),F (B),F (C)), Λsub ⊆ Λ if ∃ projection matrix P, so

Λsub = (F (A)P,F (B)P,F (C)P).

The projection matrix extracts #cols(P) columns of each matrix.

Definition (Bilinear algorithm expansion)
A bilinear algorithm Λ has expansion bound EΛ : N3 → N, if for all

Λsub := (F (A)
sub,F

(B)
sub,F

(C)
sub) ⊆ Λ

we have rank(Λsub) ≤ EΛ
(

rank(F (A)
sub), rank(F (B)

sub), rank(F (C)
sub)

)
For matrix mult., Loomis-Whitney inequality → EMM(x , y , z) = √xyz
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Bilinear algorithms for symmetric tensor contractions

A tensor T ∈ Rn1×···×nd has
order d (i.e. d modes / indices)
dimensions n-by-· · · -by-n
elements Ti1...id = Ti where i ∈ {1, . . . , n}d

We say a tensor is symmetric if for any j , k ∈ {1, . . . , n}

Ti1...ij ...ik ...id = Ti1...ik ...ij ...id

A tensor is partially-symmetric if such index interchanges are restricted to
be within subsets of {1, . . . , n}, e.g.

T ij
kl = T ji

kl = T ji
lk = T ij

lk

For any s, t, v ∈ {0, 1, . . .}, a tensor contraction is

∀i ∈ {1, . . . , n}s , j ∈ {1, . . . , n}t , Cij =
∑

k∈{1,...,n}v

AikBkj
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Symmetric matrix times vector

Lets consider the simplest tensor contraction with symmetry
let A be an n-by-n symmetric matrix (Aij = Aji )
the symmetry is not preserved in matrix-vector multiplication

c = A · b

ci =
n∑

j=1
Aij · bj︸ ︷︷ ︸

nonsymmetric

generally n2 additions and n2 multiplications are performed
we can perform only

(n+1
2
)

multiplications using1

ci =
n∑

j=1,j 6=i
Aij · (bi + bj)︸ ︷︷ ︸

symmetric

+
(

Aii −
n∑

j=1,j 6=i
Aij

)
· bi︸ ︷︷ ︸

low-order

1E.S., J. Demmel, 2015
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Symmetrized outer product

Consider a rank-2 outer product of vectors a and b of length n into
symmetric matrix C

C = a · bT + b · aT

Cij = ai · bj︸ ︷︷ ︸
nonsymmetric

+ aj · bi︸ ︷︷ ︸
permutation

usually computed via the n2 multiplications and n2 additions
new algorithm requires

(n+1
2
)

multiplications

Cij = (ai + aj) · (bi + bj)︸ ︷︷ ︸
Z ij︸ ︷︷ ︸

symmetric

− ai · bi︸ ︷︷ ︸
wi

− aj · bj︸ ︷︷ ︸
wj︸ ︷︷ ︸

low-order
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Symmetrized matrix multiplication

For symmetric matrices A and B, compute

Cij =
n∑

k=1

(
Aik · Bkj︸ ︷︷ ︸

nonsymmetric

+ Ajk · Bki︸ ︷︷ ︸
permutation

)
New algorithm requires

(n+2
3
)

multiplications rather than n3

Cij =
∑
k 6=i,j

(Aij + Aik + Ajk) · (Bij + Bkj + Bki

)
︸ ︷︷ ︸

Z ijk – symmetric

−
n∑

k 6=i
Aik · Bik︸ ︷︷ ︸

wi – low-order

−
n∑

k 6=j
Ajk · Bjk︸ ︷︷ ︸

wj – low-order

+ 1
n−2

(
(2−n)Aij − A(1)

i − A(1)
j

)
·
(

(n−2)Bij + B(1)
i + B(1)

j

)
︸ ︷︷ ︸

Uij – low-order

+ 1
n−2

(
A(1)

i + A(1)
j

)
·
(

B(1)
i + B(1)

j

)
︸ ︷︷ ︸

Vij – low-order

where A(1)
i =

(
Aii −

∑n
k 6=i Aki

)
and B(1)

i =
(

Bii −
∑n

k 6=i Bki

)
.

Householder Symposium XX Towards an algebraic formalism for scalable numerical algorithms 16/27



Symmetrized tensor contraction

Generally consider any symmetric tensor contraction for s, t, v ∈ {0, 1, . . .}

∀i ∈ {1, . . . , n}s , j ∈ {1, . . . , n}t ,Cij =
∑

k∈{1,...,n}v

AikBkj + permutations

best previous algorithms used roughly
(n

s
)(n

t
)(n

v
)

multiplications, new
algorithm requires roughly

( n
s+t+v

)
multiplications

these are bilinear algorithms and correspond to a CP decomposition of
the symmetric contraction tensor that defines the problem
analysis of bilinear expansion gives us communication lower bounds

surprising negative result – when s + t + v ≥ 4 and s 6= t 6= v
asymptotically more communication necessary for new algorithm!

algorithm can be nested in the case of partially-symmetric contractions,
leads to a reduction in cost – manyfold cost improvements in some
high-order quantum chemistry methods
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Analysis of bilinear algorithms

There are a few very fundamental bilinear problems
matrix multiplication
symmetric tensor contractions
convolution

The algebraic formulation enables systematic derivation and analysis
direct proof of correctness
CP decomposition can be computed numerically to find algorithms
numerical stability easy to infer1

communication lower bounds via bilinear expansion2

Some problems are multilinear or correspond to chains of bilinear algorithms,
can we provide useful algebraic formulations for these problems and the
space of algorithms?

1A.R. Benson, G. Ballard, ACM SIGPLAN 2015
2E.S., J. Demmel, T. Hoefler, 2015
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A more complicated case: HSS matrices

Hierarchically-semi-separable (HSS) matrices have the structure

For example the ‘prefix-sum’ matrix


0 0 · · · 0

1 0 · · ·
...

...
. . . . . .

...
1 · · · 1 0

 is HSS with rank 1
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HSS matrices algebraically

There are a few different ways to think about HSS matrices
geometrically (FMM) as trees, mat-vecs do up-sweep and down-sweep
algebraically as a telescoping block-sparse matrix factorization1

algebraically as a dense tensor factorization like

U(3)
ijk (U(2)

jk (U(1)
k B(0)V (1)

c ) + δc
kB(1)

c )V (2)
bc ) + δbc

jk B(2)
bc )V (3)

abc

where summations are implicit (Einstein notation) and δ is an identity
is this representation only a theoretical curiosity?

1P.G. Martinsson, SIAM Journal on Matrix Analysis and Applications, 2011
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A stand-alone library for petascale tensor computations
Cyclops Tensor Framework (CTF)1

distributed-memory symmetric/sparse tensors as C++ objects
Matrix <int > A(n, n, AS|SP , World( MPI_COMM_WORLD ));
Tensor <float > T(order , is_sparse , dims , syms , ring , world );
T.read(... ); T.write(... ); T.slice(... ); T. permute (... );

parallel contraction/summation of tensors
Z["abij"] += V["ijab"];
B["ai"] = A["aiai"];
T["abij"] = T["abij"]*D["abij"];
W["mnij"] += 0.5*W["mnef"]*T["efij"];
Z["abij"] -= R["mnje"]*T3[" abeimn "];
M["ij"] += Function < >([]( double x){ return 1/x; })(v["j"]);

development (1500 commits) since 2011, open source since 2013

1E.S., D. Matthews, J.R. Hammond, J. Demmel, JPDC 2014
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Coupled cluster: an initial application driver

CCSD contractions from Aquarius (lead by Devin Matthews)
https://github.com/devinamatthews/aquarius

FMI["mi"] += 0.5*WMNEF["mnef"]*T2["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T2["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T2["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T2["afin"];

Z2["abij"] = WMNEF["ijab"];
Z2["abij"] += FAE["af"]*T2["fbij"];
Z2["abij"] -= FMI["ni"]*T2["abnj"];
Z2["abij"] += 0.5*WABEF["abef"]*T2["efij"];
Z2["abij"] += 0.5*WMNIJ["mnij"]*T2["abmn"];
Z2["abij"] -= WAMEI["amei"]*T2["ebmj"];

CTF is used within Aquarius, QChem, VASP, and Psi4
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Performance of CTF for coupled cluster
CCSD up to 55 (50) water molecules with cc-pVDZ

CCSDT up to 10 water molecules with cc-pVDZ
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compares well to NWChem (up to 10x speed-ups for CCSDT)
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MP3 method

Tensor <> Ea , Ei , Fab , Fij , Vabij , Vijab , Vabcd , Vijkl , Vaibj;
... // compute above 1-e an 2-e integrals

Tensor <> T(4, Vabij.lens , *Vabij.wrld );
T["abij"] = Vabij["abij"];

divide_EaEi (Ea , Ei , T);

Tensor <> Z(4, Vabij.lens , *Vabij.wrld );
Z["abij"] = Vijab["ijab"];
Z["abij"] += Fab["af"]*T["fbij"];
Z["abij"] -= Fij["ni"]*T["abnj"];
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];
Z["abij"] += Vaibj["amei"]*T["ebmj"];

divide_EaEi (Ea , Ei , Z);

double MP3_energy = Z["abij"]*Vabij["abij"];
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Sparse MP3 code

Strong and weak scaling of sparse MP3 code, with
(1) dense V and T (2) sparse V and dense T (3) sparse V and T
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CTF for betweenness centrality

Betweenness centrality is a measure of the importance of vertices in the
shortest paths of a graph

can be computed using sparse matrix multiplication (SpGEMM) with
operations on special monoids
CTF handles this in similar ways to CombBLAS
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E=128 CTF-MFBC unweighted
E=128 CombBLAS unweighted

E=128 CTF-MFBC weighted
E=8 CTF-MFBC unweighted
E=8 CombBLAS unweighted

E=8 CTF-MFBC weighted

Friendster has 66 million vertices and 1.8 billion edges (results on Blue
Waters, Cray XE6)
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Summary

Communication + synchronization are a fundamental bottleneck in many
algorithms

scalability of standard algorithms for dense LU, QR, SVD and sparse
iterative methods is well understood theoretically
much to explore in practice, important algorithms not yet implemented
lower bounds motivate more radical algorithmic changes

Bilinear algorithms and tensor factorization representations
provide an analytical tool for deriving lower-bounds
demonstrate insights on communication of new algorithms for symmetric
tensor contractions
enable succinct algebraic description in native dimensionality
allow for effective parallel implementation based on high-level
specification (Cyclops Tensor Framework)
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