Towards an algebraic formalism for scalable numerical algorithms

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

Householder Symposium XX

June 22, 2017

L P. N A @CS@Illinois

Householder Symposium XX

Towards an algebraic formalism for scalable numerical algorithms

Communication-synchronization wall

To analyze parallel algorithms, we consider costs along the critical path of the execution ${\rm schedule}^1$

- F computation cost
- W horizontal communication cost
- S synchronization cost

We can show a commonality between

- Cholesky of an $n \times n$ matrix and
- *n* steps of a 9-pt stencil:

$$W \cdot S = \Omega(n^2)$$

regardless of #processors¹

¹E.S., E. Carson, N. Knight, J. Demmel, TOPC 2016

Householder Symposium XX

Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the $n \times n$ diamond DAG,¹

$$F \cdot S = \Omega(n^2)$$

In this DAG, vertices denote scalar computations in an algorithm

¹C.H. Papadimitriou, J.D. Ullman, SIAM JC, 1987

Householder Symposium XX

Towards an algebraic formalism for scalable numerical algorithms

Scheduling tradeoffs of path-expander graphs

Definition ((ϵ, σ)-path-expander)

Graph G = (V, E) is a (ϵ, σ) -**path-expander** if there exists a path $(u_1, \ldots u_n) \subset V$, such that the dependency interval $[u_i, u_{i+b}]_G$ for each i, b has size $\Theta(\sigma(b))$ and a minimum cut of size $\Omega(\epsilon(b))$.

Theorem (Path-expander communication lower bound)

Any parallel schedule of an algorithm with a (ϵ, σ) -path-expander dependency graph about a path of length n and some $b \in [1, n]$ incurs computation (F), communication (W), and synchronization (S) costs:

$$F = \Omega\left(\sigma(b) \cdot n/b\right), \quad W = \Omega\left(\epsilon(b) \cdot n/b\right), \quad S = \Omega\left(n/b\right).$$

Corollary

If $\sigma(b) = b^d$ and $\epsilon(b) = b^{d-1}$, the above theorem yields,

$$F \cdot S^{d-1} = \Omega(n^d), \quad W \cdot S^{d-2} = \Omega(n^{d-1}).$$

Householder Symposium XX

Synchronization-communication wall in iterative methods

The theorem can be applied to sparse iterative methods on regular grids. For computing s applications of a $(2m + 1)^d$ -point stencil,

$$F_{\mathsf{St}} \cdot S^d_{\mathsf{St}} = \Omega\left(m^{2d} \cdot s^{d+1}\right), \qquad W_{\mathsf{St}} \cdot S^{d-1}_{\mathsf{St}} = \Omega\left(m^d \cdot s^d\right)$$

while *s*-step methods reduce synchronization, for large *s* they require asymptotically more communication.

The lower bound is attained by *s*-step methods when *s* approaches the dimension of each processor's local subgrid.

A more scalable algorithm for TRSM

For Cholesky factorization with p processors, parallel schedules can attain

$$F = O(n^3/p), \quad W = O(n^2/p^\delta), \quad S = O(p^\delta)$$

for any $\delta = [1/2, 2/3]$. Achieving similar costs for LU, QR, and the symmetric eigenvalue problem requires some algorithmic tweaks.

triangular solve	square TRSM $\sqrt{1}$	rectangular TRSM $\sqrt{2}$
LU with pivoting	pairwise pivoting $\sqrt{3}$	tournament pivoting \checkmark^4
QR factorization	Givens on square $\sqrt{3}$	Householder on rect. $\sqrt{5}$
SVD	singular values only $\sqrt{5}$	singular vectors X

 \checkmark means costs attained (synchronization within polylogarithmic factors). Ongoing work on QR with column pivoting

¹B. Lipshitz, MS thesis 2013

²T. Wicky, E.S., T. Hoefler, IPDPS 2017

³A. Tiskin, FGCS 2007

⁴E.S., J. Demmel, EuroPar 2011

⁵E.S., G. Ballard, T. Hoefler, J. Demmel, SPAA 2017

New algorithms can circumvent lower bounds

For TRSM, we can achieve a lower synchronization/communication cost by performing triangular inversion on diagonal blocks

- decreases synchronization cost by $O(p^{2/3})$ on p processors with respect to known algorithms
- optimal communication for any number of right-hand sides
- MS thesis work by Tobias Wicky¹

¹T. Wicky, E.S., T. Hoefler, IPDPS 2017

Improving scalability for iterative methods

Randomized-projection methods have potential to significantly improve scalability over iterative Krylov subspace methods

- key idea: replace sparse mat-vecs with sparse mat-muls
- define $n \times (k + 10)$ Gaussian random matrix $oldsymbol{X}$
- AX gives a good representation of the kernel of A
- accuracy can be improved exponentially with q^1

$$(\mathbf{A}\mathbf{A}^T)^q \mathbf{A}\mathbf{X}$$

 $\bullet\,$ many related results with high potential for efficiency (e.g. randomized column pivoting for QR $^2)$

 $^1\text{N}.$ Halko, P.G. Martinsson, J.A. Tropp, SIAM Review 2011 $^2\text{P.G}.$ Martinsson, G. Quintana Orti, N. Heavner. R. van de Geijn, SIAM 2017

Need algorithms and methods that are more parallelizable rather than parallel schedules of existing algorithms.

How can we formally define an algorithm?

Formally defining a space of algorithms enables systematic exploration.

Definition (Bilinear algorithms (V. Pan, 1984))

A bilinear algorithm $\Lambda = (F^{(A)}, F^{(B)}, F^{(C)})$ computes

$$\boldsymbol{c} = \boldsymbol{F}^{(\boldsymbol{C})}[(\boldsymbol{F}^{(\boldsymbol{A})\top}\boldsymbol{a}) \circ (\boldsymbol{F}^{(\boldsymbol{B})\top}\boldsymbol{b})],$$

where \boldsymbol{a} and \boldsymbol{b} are inputs and \circ is the Hadamard (pointwise) product.

$$\begin{bmatrix} \mathbf{c} \end{bmatrix} = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf$$

10/27

Bilinear algorithms as tensor factorizations

A bilinear algorithm corresponds to a CP tensor decomposition

$$c_{i} = \sum_{r=1}^{R} F_{ir}^{(C)} \left(\sum_{j} F_{jr}^{(A)} a_{j} \right) \left(\sum_{k} F_{kr}^{(B)} b_{k} \right)$$
$$= \sum_{j} \sum_{k} \left(\sum_{r=1}^{R} F_{ir}^{(C)} F_{jr}^{(A)} F_{kr}^{(B)} \right) a_{j} b_{k}$$
$$= \sum_{j} \sum_{k} T_{ijk} a_{j} b_{k} \quad \text{where} \quad T_{ijk} = \sum_{r=1}^{R} F_{ir}^{(C)} F_{jr}^{(A)} F_{kr}^{(B)}$$

For multiplication of $n \times n$ matrices,

- **T** is $n^2 \times n^2 \times n^2$
- classical algorithm has rank $R = n^3$
- Strassen's algorithm has rank $R \approx n^{\log_2(7)}$

11/27

Expansion in bilinear algorithms

The communication complexity of a bilinear algorithm depends on the amount of data needed to compute subsets of the bilinear products.

Definition (Bilinear subalgorithm)

Given $\Lambda = (F^{(A)}, F^{(B)}, F^{(C)})$, $\Lambda_{sub} \subseteq \Lambda$ if \exists projection matrix P, so

$$\Lambda_{\rm sub} = (\boldsymbol{F}^{(\boldsymbol{A})}\boldsymbol{P}, \boldsymbol{F}^{(\boldsymbol{B})}\boldsymbol{P}, \boldsymbol{F}^{(\boldsymbol{C})}\boldsymbol{P}).$$

The projection matrix extracts #cols(P) columns of each matrix.

Definition (Bilinear algorithm expansion)

A bilinear algorithm Λ has expansion bound $\mathcal{E}_\Lambda:\mathbb{N}^3\to\mathbb{N},$ if for all

$$\Lambda_{\mathrm{sub}} \coloneqq (\boldsymbol{F}_{\mathrm{sub}}^{(\boldsymbol{A})}, \boldsymbol{F}_{\mathrm{sub}}^{(\boldsymbol{B})}, \boldsymbol{F}_{\mathrm{sub}}^{(\boldsymbol{C})}) \subseteq \Lambda$$

we have $\mathsf{rank}(\Lambda_{\mathrm{sub}}) \leq \mathcal{E}_{\Lambda}\left(\mathsf{rank}(\boldsymbol{F}_{\mathrm{sub}}^{(\boldsymbol{A})}),\mathsf{rank}(\boldsymbol{F}_{\mathrm{sub}}^{(\boldsymbol{B})}),\mathsf{rank}(\boldsymbol{F}_{\mathrm{sub}}^{(\boldsymbol{C})})\right)$

For matrix mult., Loomis-Whitney inequality $o \mathcal{E}_{\mathsf{MM}}(x,y,z) = \sqrt{xyz}$

Bilinear algorithms for symmetric tensor contractions

- A tensor $\boldsymbol{T} \in \mathbb{R}^{n_1 imes \cdots imes n_d}$ has
 - order *d* (i.e. *d* modes / indices)
 - dimensions *n*-by-···-by-*n*
 - elements $\mathbf{T}_{i_1...i_d} = \mathbf{T}_{i}$ where $i \in \{1, \ldots, n\}^d$

We say a tensor is symmetric if for any $j, k \in \{1, \ldots, n\}$

$$\boldsymbol{T}_{\boldsymbol{i}_1\ldots\boldsymbol{i}_j\ldots\boldsymbol{i}_k\ldots\boldsymbol{i}_d}=\boldsymbol{T}_{\boldsymbol{i}_1\ldots\boldsymbol{i}_k\ldots\boldsymbol{i}_j\ldots\boldsymbol{i}_d}$$

A tensor is partially-symmetric if such index interchanges are restricted to be within subsets of $\{1, \ldots, n\}$, e.g.

$$\boldsymbol{T}_{kl}^{ij} = \boldsymbol{T}_{kl}^{ji} = \boldsymbol{T}_{lk}^{ji} = \boldsymbol{T}_{lk}^{ij}$$

For any $s, t, v \in \{0, 1, \ldots\}$, a tensor contraction is

$$\forall \mathbf{i} \in \{1, \dots, n\}^{s}, \mathbf{j} \in \{1, \dots, n\}^{t}, \quad \mathbf{C}_{ij} = \sum_{\mathbf{k} \in \{1, \dots, n\}^{v}} \mathbf{A}_{ik} \mathbf{B}_{kj}$$

13/27

Symmetric matrix times vector

Lets consider the simplest tensor contraction with symmetry

- let \boldsymbol{A} be an *n*-by-*n* symmetric matrix ($\boldsymbol{A}_{ij} = \boldsymbol{A}_{ji}$)
- the symmetry is not preserved in matrix-vector multiplication

$$c = A \cdot b$$

$$c_i = \sum_{j=1}^{n} \underbrace{A_{ij} \cdot b_j}_{\text{nonsymmetric}}$$

• generally n^2 additions and n^2 multiplications are performed • we can perform only $\binom{n+1}{2}$ multiplications using¹

$$\boldsymbol{c}_{i} = \sum_{j=1, j \neq i}^{n} \underbrace{\boldsymbol{A}_{ij} \cdot (\boldsymbol{b}_{i} + \boldsymbol{b}_{j})}_{\text{symmetric}} + \underbrace{\left(\boldsymbol{A}_{ii} - \sum_{j=1, j \neq i}^{n} \boldsymbol{A}_{ij}\right) \cdot \boldsymbol{b}_{i}}_{\text{low-order}}$$

Householder Symposium XX

Symmetrized outer product

Consider a rank-2 outer product of vectors \boldsymbol{a} and \boldsymbol{b} of length n into symmetric matrix \boldsymbol{C}

usually computed via the n^2 multiplications and n^2 additions new algorithm requires $\binom{n+1}{2}$ multiplications

15/27

Symmetrized matrix multiplication

For symmetric matrices **A** and **B**, compute

$$\boldsymbol{C}_{ij} = \sum_{k=1}^{n} \Big(\underbrace{\boldsymbol{A}_{ik} \cdot \boldsymbol{B}_{kj}}_{\text{nonsymmetric}} + \underbrace{\boldsymbol{A}_{jk} \cdot \boldsymbol{B}_{ki}}_{\text{permutation}} \Big)$$

New algorithm requires $\binom{n+2}{3}$ multiplications rather than n^3

$$C_{ij} = \sum_{k \neq i,j} \underbrace{\left(\mathbf{A}_{ij} + \mathbf{A}_{ik} + \mathbf{A}_{jk}\right) \cdot \left(\mathbf{B}_{ij} + \mathbf{B}_{kj} + \mathbf{B}_{ki}\right)}_{\mathbf{Z}_{ijk} - \text{symmetric}} - \underbrace{\sum_{k \neq i}^{n} \mathbf{A}_{ik} \cdot \mathbf{B}_{ik}}_{\mathbf{W}_{i} - \text{low-order}} - \underbrace{\sum_{k \neq j}^{n} \mathbf{A}_{jk} \cdot \mathbf{B}_{jk}}_{\mathbf{W}_{j} - \text{low-order}} + \underbrace{\frac{1}{n-2} \left((2-n)\mathbf{A}_{ij} - \mathbf{A}_{i}^{(1)} - \mathbf{A}_{j}^{(1)} \right) \cdot \left((n-2)\mathbf{B}_{ij} + \mathbf{B}_{i}^{(1)} + \mathbf{B}_{j}^{(1)} \right)}_{\mathbf{U}_{ij} - \text{low-order}} + \underbrace{\frac{1}{n-2} \left(\mathbf{A}_{i}^{(1)} + \mathbf{A}_{j}^{(1)} \right) \cdot \left(\mathbf{B}_{i}^{(1)} + \mathbf{B}_{j}^{(1)} \right)}_{\mathbf{V}_{ij} - \text{low-order}} + \underbrace{\frac{1}{n-2} \left(\mathbf{A}_{i}^{(1)} - \sum_{k \neq i}^{n} \mathbf{A}_{ki} \right)}_{\mathbf{V}_{ij} - \text{low-order}} \text{ and } \mathbf{B}_{i}^{(1)} = \left(\mathbf{B}_{ii} - \sum_{k \neq i}^{n} \mathbf{B}_{ki} \right).$$

16/27

Generally consider any symmetric tensor contraction for $s, t, v \in \{0, 1, \ldots\}$

$$\forall \mathbf{i} \in \{1, \dots, n\}^{s}, \mathbf{j} \in \{1, \dots, n\}^{t}, \mathbf{C}_{ij} = \sum_{\mathbf{k} \in \{1, \dots, n\}^{v}} \mathbf{A}_{ik} \mathbf{B}_{kj} + \text{permutations}$$

- best previous algorithms used roughly $\binom{n}{s}\binom{n}{t}\binom{n}{v}$ multiplications, new algorithm requires roughly $\binom{n}{s+t+v}$ multiplications
- these are bilinear algorithms and correspond to a CP decomposition of the symmetric contraction tensor that defines the problem
- analysis of bilinear expansion gives us communication lower bounds
 - surprising negative result when s + t + v ≥ 4 and s ≠ t ≠ v asymptotically more communication necessary for new algorithm!
- algorithm can be nested in the case of partially-symmetric contractions, leads to a reduction in cost – manyfold cost improvements in some high-order quantum chemistry methods

Analysis of bilinear algorithms

There are a few very fundamental bilinear problems

- matrix multiplication
- symmetric tensor contractions
- convolution

The algebraic formulation enables systematic derivation and analysis

- direct proof of correctness
- CP decomposition can be computed numerically to find algorithms
- numerical stability easy to infer¹
- communication lower bounds via bilinear expansion²

Some problems are multilinear or correspond to chains of bilinear algorithms, can we provide useful algebraic formulations for these problems and the space of algorithms?

²E.S., J. Demmel, T. Hoefler, 2015

Householder Symposium XX

¹A.R. Benson, G. Ballard, ACM SIGPLAN 2015

A more complicated case: HSS matrices

Hierarchically-semi-separable (HSS) matrices have the structure

HSS matrices algebraically

There are a few different ways to think about HSS matrices

- geometrically (FMM) as trees, mat-vecs do up-sweep and down-sweep
- algebraically as a telescoping block-sparse matrix factorization¹

• algebraically as a dense tensor factorization like

$$\boldsymbol{U}_{ijk}^{(3)}(\boldsymbol{U}_{jk}^{(2)}(\boldsymbol{U}_{k}^{(1)}\boldsymbol{B}^{(0)}\boldsymbol{V}_{c}^{(1)}) + \delta_{k}^{c}\boldsymbol{B}_{c}^{(1)})\boldsymbol{V}_{bc}^{(2)}) + \delta_{jk}^{bc}\boldsymbol{B}_{bc}^{(2)})\boldsymbol{V}_{abc}^{(3)}$$

where summations are implicit (Einstein notation) and δ is an identity • is this representation only a theoretical curiosity?

¹P.G. Martinsson, SIAM Journal on Matrix Analysis and Applications, 2011 Householder Symposium XX Towards an algebraic formalism for scalable numerical algorithms 20/27

A stand-alone library for petascale tensor computations

Cyclops Tensor Framework (CTF)¹

• distributed-memory symmetric/sparse tensors as C++ objects

```
Matrix<int> A(n, n, AS|SP, World(MPI_COMM_WORLD));
Tensor<float> T(order, is_sparse, dims, syms, ring, world);
T.read(...); T.write(...); T.slice(...); T.permute(...);
```

• parallel contraction/summation of tensors

```
Z["abij"] += V["ijab"];
B["ai"] = A["aiai"];
T["abij"] = T["abij"]*D["abij"];
W["mnij"] += 0.5*W["mnef"]*T["efij"];
Z["abij"] -= R["mnje"]*T3["abeimn"];
M["ij"] += Function<>([](double x){ return 1/x; })(v["j"]);
```

• development (1500 commits) since 2011, open source since 2013

Coupled cluster: an initial application driver

CCSD contractions from Aquarius (lead by Devin Matthews) https://github.com/devinamatthews/aquarius

```
FMI["mi"] += 0.5*WMNEF["mnef"]*T2["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T2["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T2["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T2["afin"];
Z2["abij"] = WMNEF["ijab"];
Z2["abij"] += FAE["af"]*T2["fbij"];
Z2["abij"] -= FMI["ni"]*T2["abnj"];
Z2["abij"] += 0.5*WABEF["abef"]*T2["efij"];
Z2["abij"] += 0.5*WMNIJ["mnij"]*T2["abmn"];
Z2["abij"] -= WAMEI["amei"]*T2["ebmj"];
```

CTF is used within Aquarius, QChem, VASP, and Psi4

Performance of CTF for coupled cluster

CCSD up to 55 (50) water molecules with cc-pVDZ CCSDT up to 10 water molecules with cc-pVDZ

compares well to NWChem (up to 10x speed-ups for CCSDT)

Householder Symposium XX

```
Tensor <> Ea, Ei, Fab, Fij, Vabij, Vijab, Vabcd, Vijkl, Vaibj ... // compute above 1-e an 2-e integrals
```

```
Tensor<> T(4, Vabij.lens, *Vabij.wrld);
T["abij"] = Vabij["abij"];
```

```
divide_EaEi(Ea, Ei, T);
```

```
Tensor<> Z(4, Vabij.lens, *Vabij.wrld);
Z["abij"] = Vijab["ijab"];
Z["abij"] += Fab["af"]*T["fbij"];
Z["abij"] -= Fij["ni"]*T["abnj"];
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];
Z["abij"] += Vaibj["amei"]*T["ebmj"];
```

divide_EaEi(Ea, Ei, Z);

```
double MP3_energy = Z["abij"]*Vabij["abij"];
```

Sparse MP3 code

Strong and weak scaling of sparse MP3 code, with (1) dense V and T (2) sparse V and dense T (3) sparse V and T

CTF for betweenness centrality

Betweenness centrality is a measure of the importance of vertices in the shortest paths of a graph

- can be computed using sparse matrix multiplication (SpGEMM) with operations on special monoids
- CTF handles this in similar ways to CombBLAS

Friendster has 66 million vertices and 1.8 billion edges (results on Blue Waters, Cray XE6)

 $\label{eq:communication} Communication + synchronization \mbox{ are a fundamental bottleneck in many algorithms}$

- scalability of standard algorithms for dense LU, QR, SVD and sparse iterative methods is well understood theoretically
- much to explore in practice, important algorithms not yet implemented
- lower bounds motivate more radical algorithmic changes

Bilinear algorithms and tensor factorization representations

- provide an analytical tool for deriving lower-bounds
- demonstrate insights on communication of new algorithms for symmetric tensor contractions
- enable succinct algebraic description in native dimensionality
- allow for effective parallel implementation based on high-level specification (Cyclops Tensor Framework)

Backup slides

