A communication-avoiding parallel algorithm for the symmetric eigenvalue problem

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

Householder Symposium XX

June 19, 2017

L·P·N·A @ CS@Illinois
Algorithms should minimize communication, not just computation
- Communication and synchronization cost more energy than flops
- Two types of communication (data movement):
 - **Vertical** (intranode memory–cache)
 - **Horizontal** (internode network transfers)
- Parallel algorithm design involves tradeoffs: computation vs communication vs synchronization
- Parameterized algorithms provide optimality and flexibility
BSP model definition

The Bulk Synchronous Parallel (BSP) model1 is a theoretical execution/cost model for parallel algorithms

- execution is subdivided into \(s \) supersteps, each associated with a global synchronization (cost \(\alpha \))
- at the start of each superstep, processors interchange messages, then they perform local computation
- if the maximum amount of data sent or received by any process is \(m_i \) at superstep \(i \) then the horizontal communication cost is

\[
T = \sum_{i=1}^{s} \alpha + m_i \cdot \beta
\]

1Valiant 1990
In addition to computation and BSP horizontal communication cost, we consider \textit{vertical communication cost}:

- F – computation cost (local computation)
- Q – vertical communication cost (memory–cache traffic)
- W – horizontal communication cost (interprocessor communication)
- S – synchronization cost (number of supersteps)
Symmetric eigenvalue problem

Given a dense symmetric matrix \(A \in \mathbb{R}^{n \times n} \) find diagonal matrix \(D \) so

\[
AX = XD
\]

where \(X \) is an orthogonal matrix composed of eigenvectors of \(A \)

- **diagonalization** – reduction of \(A \) to diagonal matrix \(D \)
- computing the SVD has very similar computational structure
- we focus on tridiagonalization (bidiagonalization for SVD), from which standard approaches (e.g. MRRR) can be used
- core building blocks:
 - matrix multiplication
 - QR factorization
Parallel matrix multiplication

Multiplication of \(A \in \mathbb{R}^{m \times k} \) and \(B \in \mathbb{R}^{k \times n} \) can be done in \(O(1) \) supersteps with communication cost \(W = O\left(\left(\frac{mnk}{p}\right)^{2/3}\right) \) provided sufficiently memory and sufficiently large \(p \)

- when \(m = n = k \), 3D blocking gets \(O\left(p^{1/6}\right) \) improvement over 2D
- when \(m, n, k \) are unequal, need appropriate processor grid

\[\text{References:}\]

- Berntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar, IBM, 1995; McColl, Tiskin, Algorithmica, 1999; ...

- Demmel, Eliahu, Fox, Kamil, Lipshitz, Schwartz, Spillinger 2013
Bandwidth-efficient QR and diagonalization

Goal: achieve the same communication complexity for QR and diagonalization as for matrix multiplication

- synchronization complexity expected to be higher

\[W \cdot S = \Omega(n^2) \]

product of communication and synchronization cost must be greater than the square of the number of columns

general strategy

1. use communication-efficient matrix-multiplication for QR
2. use communication-efficient QR for diagonalization
Consider the reduced factorization $\mathbf{A} = \mathbf{QR}$ with $\mathbf{A}, \mathbf{Q} \in \mathbb{R}^{m \times n}$ and $\mathbf{R} \in \mathbb{R}^{n \times n}$ when $m \gg n$ (in particular $m \geq np$)

- \mathbf{A} is tall-and-skinny, each processor owns a block of rows
- Householder-QR requires $S = \Theta(n)$ supersteps, $W = O(n^2)$
- Cholesky-QR2, TSQR, and HR-TSQR require $S = \Theta(\log(p))$ supersteps
 - Cholesky-QR2\(^4\): stable so long as $\kappa(\mathbf{A}) \leq 1/\sqrt{\varepsilon}$, $W = O(n^2)$

\[
\mathbf{L} = \text{Chol}(\mathbf{A}^T \mathbf{A}), \quad \mathbf{Z} = \mathbf{A} \mathbf{L}^{-T}, \quad \bar{\mathbf{L}} = \text{Chol}(\mathbf{Z}^T \mathbf{Z}), \quad \mathbf{Q} = \mathbf{Z} \bar{\mathbf{L}}^{-T}, \quad \mathbf{R} = \bar{\mathbf{L}}^T \mathbf{L}^T
\]

- TSQR\(^5\): row-recursive divide-and-conquer, $W = O(n^2 \log(p))$

\[
\begin{bmatrix}
\mathbf{Q}_1 \mathbf{R}_1 \\
\mathbf{Q}_2 \mathbf{R}_2
\end{bmatrix} =
\begin{bmatrix}
\text{TSQR}(\mathbf{A}_1) \\
\text{TSQR}(\mathbf{A}_2)
\end{bmatrix}, \quad
\begin{bmatrix}
\mathbf{Q}_{12} \\
\mathbf{R}
\end{bmatrix} = \mathbf{QR} \left(
\begin{bmatrix}
\mathbf{R}_1 \\
\mathbf{R}_2
\end{bmatrix}, \quad \mathbf{Q} =
\begin{bmatrix}
\mathbf{Q}_1 & 0 \\
0 & \mathbf{Q}_2
\end{bmatrix} \mathbf{Q}_{12}
\end{bmatrix}
\]

- TSQR-HR\(^6\): TSQR with Householder-reconstruction, $W = O(n^2 \log(p))$

\(^4\) Yamamoto, Nakatsukasa, Yanagisawa, Fukaya 2015
\(^5\) Demmel, Grigori, Hoemmen, Langou 2012
\(^6\) Ballard, Demmel, Grigori, Jacquelin, Nguyen, S. 2014
Square matrix QR algorithms generally use 1D QR for panel factorization. Algorithms in ScaLAPACK, Elemental, DPLASMA use 2D layout, generally achieve $W = O(n^2/\sqrt{p})$ cost. Tiskin’s 3D QR algorithm7 achieves $W = O(n^2/p^{2/3})$ communication, however, requires slanted-panel matrix embedding.

7Tiskin 2007, “Communication-efficient generic pairwise elimination”

which is highly inefficient for rectangular (tall-and-skinny) matrices.
For $\mathbf{A} \in \mathbb{R}^{m \times n}$ existing algorithms are optimal when $m = n$ and $m \gg n$

- cases with $n < m < np$ underdetermined equations are important
- new algorithm
 - subdivide p processors into m/n groups of pn/m processors
 - perform row-recursive QR (TSQR) with tree of height $\log_2(m/n)$
 - compute each tree-node elimination QR($\begin{bmatrix} \mathbf{R}_1 \\ \mathbf{R}_2 \end{bmatrix}$) using Tiskin’s QR with pn/m or more processors
- note: interleaving rows of \mathbf{R}_1 and \mathbf{R}_2 gives a slanted panel!
- obtains ideal communication cost for any m, n, generally

\[W = O\left(\left(\frac{mn^2}{p}\right)^{2/3}\right) \]
Cholesky-QR2 with 3D Cholesky provides a simple 3D QR algorithm for well-conditioned rectangular matrices

work by Edward Hutter (PhD student at UIUC)
Reducing the symmetric matrix $A \in \mathbb{R}^{n \times n}$ to a tridiagonal matrix $T = Q^T AQ$

via a **two-sided orthogonal transformation** is most costly in diagonalization

- can be done by **successive column QR factorizations**

\[
T = \underbrace{Q_1^T \cdots Q_n^T}_Q \underbrace{A Q_1 \cdots Q_n}_T
\]

- two-sided updates harder to manage than one-sided
- can use n/b QRs on panels of b columns to go to band-width $b + 1$
- $b = 1$ gives direct tridiagonalization
Writing the orthogonal transformation in Householder form, we get

\[\left(I - UTU^T \right)^T A \left(I - UTU^T \right) = A - UV^T - VU^T \]

where \(U \) are Householder vectors and \(V \) is

\[V^T = TU^T + \frac{1}{2} T^T U^T A U \quad TU^T \]

- when performing two-sided updates, computing \(AU \) dominates cost
- if \(b = 1 \), \(U \) is a column-vector, and \(AU \) is dominated by vertical communication cost (moving \(A \) between memory and cache)
- idea: reduce to banded matrix \((b \gg 1) \) first\(^8\)

\(^8\) Auckenthaler, Bungartz, Huckle, Krämer, Lang, Willems 2011
Successive band reduction (SBR)

After reducing to a banded matrix, we need to transform the banded matrix to a tridiagonal one

- fewer nonzeros lead to lower computational cost, $F = O(n^2 b/p)$
- however, transformations introduce fill/bulges
- bulges must be chased down the band

![Diagram of SBR process](image)

- communication- and synchronization-efficient 1D SBR algorithm known for small band-width

9. Lang 1993; Bischof, Lang, Sun 2000
10. Ballard, Demmel, Knight 2012
Previous work (start-of-the-art): two-stage tridiagonalization
- implemented in ELPA, can outperform ScaLAPACK11
- with $n = n/\sqrt{p}$, 1D SBR gives $W = O(n^2/\sqrt{p})$, $S = O(\sqrt{p} \log^2(p))$12

New results13: many-stage tridiagonalization
- use $\Theta(\log(p))$ intermediate band-widths to achieve $W = O(n^2/p^{2/3})$
- leverage communication-efficient rectangular QR with processor groups

3D SBR (each QR and matrix multiplication update parallelized)

11 Auckenthaler, Bungartz, Huckle, Krämer, Lang, Willems 2011
12 Ballard, Demmel, Knight 2012
13 S., Ballard, Demmel, Hoefler 2017
Symmetric eigensolver results summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>W</th>
<th>Q</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScaLAPACK</td>
<td>n^2/\sqrt{p}</td>
<td>n^3/p</td>
<td>$n\log(p)$</td>
</tr>
<tr>
<td>ELPA</td>
<td>n^2/\sqrt{p}</td>
<td>-</td>
<td>$n\log(p)$</td>
</tr>
<tr>
<td>two-stage + 1D-SBR</td>
<td>n^2/\sqrt{p}</td>
<td>$n^2 \log(n)/\sqrt{p}$</td>
<td>$\sqrt{p}(\log^2(p) + \log(n))$</td>
</tr>
<tr>
<td>many-stage</td>
<td>$n^2/p^{2/3}$</td>
<td>$n^2 \log p/p^{2/3}$</td>
<td>$p^{2/3} \log^2 p$</td>
</tr>
</tbody>
</table>

- costs are asymptotic (same computational cost F for eigenvalues)
- W – horizontal (interprocessor) communication
- Q – vertical (memory–cache) communication excluding $W + F/\sqrt{H}$
- S – synchronization cost (number of supersteps)
Conclusion

Summary of contributions

- communication-efficient **QR factorization** algorithm
 - optimal communication cost for any matrix dimensions
 - variants that trade-off some accuracy guarantees for performance
- communication-efficient **symmetric eigensolver** algorithm
 - reduce matrix to successively smaller band-width
 - uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications

- ELPA demonstrated efficacy of two-stage approach, **our work motivates 3+ stages**
- partial parallel implementation is competitive but no speed-up

Future work

- back-transformations to compute **eigenvectors** in less computational complexity than $F = O(n^3 \log(p)/p)$
- **QR with column pivoting** / low-rank SVD
Talk based on joint work with

- Edward Hutter (UIUC)
- Grey Ballard (Wake Forest University)
- James Demmel (UC Berkeley)
- Torsten Hoefler (ETH Zurich)

For more details see “E.S., Grey Ballard, James Demmel, and Torsten Hoefler, A communication-avoiding parallel algorithm for the symmetric eigenvalue problem, SPAA 2017.”
12X speed-up, 95% reduction in comm. for $n = 8K$ on 16K nodes of BG/P
Communication-efficient QR factorization

- Householder form can be reconstructed quickly from TSQR\(^{14}\)
 \[Q = I - YTY^T \quad \Rightarrow \quad LU(I - Q) \rightarrow (Y, TY^T) \]
- Householder aggregation yields performance improvements

\(^{14}\)Ballard, Demmel, Grigori, Jacquelin, Nguyen, S., IPDPS, 2014
Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the $n \times n$ diamond DAG,15

$$F \cdot S = \Omega(n^2)$$

We generalize this idea16

- additionally consider horizontal communication
- allow arbitrary (polynomial or exponential) interval expansion

15 Papadimitriou, Ullman, SIAM JC, 1987
16 S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms, represented via dependency hypergraphs:17

For triangular solve with an $n \times n$ matrix,

$$F_{\text{TRSV}} \cdot S_{\text{TRSV}} = \Omega \left(n^2 \right)$$

For Cholesky of an $n \times n$ matrix,

$$F_{\text{CHOL}} \cdot S^2_{\text{CHOL}} = \Omega \left(n^3 \right) \quad W_{\text{CHOL}} \cdot S_{\text{CHOL}} = \Omega \left(n^2 \right)$$

17S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
For any $c \in [1, p^{1/3}]$, use cn^2/p memory per processor and obtain

$$W_{LU} = O\left(\frac{n^2}{\sqrt{cp}}\right), \quad S_{LU} = O\left(\sqrt{cp}\right)$$

- LU with pairwise pivoting\(^{18}\) extended to tournament pivoting\(^{19}\)
- first implementation of a communication-optimal LU algorithm\(^{10}\)

\(^{18}\) Tiskin, FGCS, 2007
\(^{19}\) S., Demmel, Euro-Par, 2011