
Coupled Cluster Algorithms Performance Conclusions

Cyclops Tensor Framework: reducing
communication and eliminating load imbalance in

massively parallel contractions

Edgar Solomonik1, Devin Matthews3,
Jeff Hammond4, James Demmel1,2

1 Department of EECS, UC Berkeley
2 Department of Mathematics, UC Berkeley

3 Department of Chemistry, UT Austin
4 Leadership Computing Facility, Argonne National Laboratory

May 22, 2013

1 / 26 Edgar Solomonik Cyclops Tensor Framework 1/ 26

Coupled Cluster Algorithms Performance Conclusions

Outline

1 Coupled Cluster
Coupled Cluster theory
Tensor contractions

2 Algorithms
NWChem
Cyclops Tensor Framework

3 Performance
Sequential performance
Parallel scalability

4 Conclusions
Future Work

2 / 26 Edgar Solomonik Cyclops Tensor Framework 2/ 26

Coupled Cluster Algorithms Performance Conclusions

Electronic structure theory

Electronic structure calculations attempt to model the
ground-state (and sometimes excited-state) energies of chemical
systems, taking into account of quantum effects.
Density Functional Theory is the most common method

cost is typically O(n3) for n electrons

models system as a density functional, corrects for correlation

good for metals and regular systems

bad at molecules due to correlation effects on boundary

Coupled Cluster models electronic correlation explicitly

cost is typically O(n4+d), where d ∈ {2, 4, 6}
the most accurate method used in practice

3 / 26 Edgar Solomonik Cyclops Tensor Framework 3/ 26

Coupled Cluster Algorithms Performance Conclusions

Coupled Cluster definition

Coupled Cluster (CC) is a method for computing an approximate
solution to the time-independent Schrödinger equation of the form

H|Ψ〉 = E |Ψ〉,

CC rewrites the wave-function |Ψ〉 as an excitation operator T̂
applied to the Slater determinant |Φ0〉

|Ψ〉 = eT̂|Φ0〉

where T̂ is as a sum of T̂n (the n’th excitation operators)

T̂CCSD = T̂1 + T̂2

T̂CCSDT = T̂1 + T̂2 + T̂3

T̂CCSDTQ = T̂1 + T̂2 + T̂3 + T̂4

4 / 26 Edgar Solomonik Cyclops Tensor Framework 4/ 26

Coupled Cluster Algorithms Performance Conclusions

Coupled cluster (CCD) implementation

eT̂2 |Φ0〉 turns into:

Rab
ij = V ab

ij + P(ia, jb)

[
T ae
ij I be − T ab

im Imj +
1

2
V ab
ef T

ef
ij +

1

2
T ab
mnI

mn
ij − T ae

mj I
mb
ie − Ima

ie T eb
mj + (2T ea

mi − T ea
im)Imb

ej

]

I ab = (−2Vmn
eb + Vmn

be)T ea
mn

I ij = (2Vmi
ef − V im

ef)T ef
mj

I ijkl = V ij
kl + V ij

ef T
ef
kl

I iajb = V ia
jb −

1

2
V im
eb T

ea
jm

I iabj = V ia
bj + V im

be (T ea
mj −

1

2
T ae
mj)−

1

2
Vmi
be T

ae
mj

5 / 26 Edgar Solomonik Cyclops Tensor Framework 5/ 26

Coupled Cluster Algorithms Performance Conclusions

Tensor contractions

We define a tensor contraction between A ∈ R⊗k , B ∈ R⊗l into
C ∈ R⊗m as

ci1...im =
∑

j1...jk+l−m

ai1...im−l j1...jk+l−m
· bj1...jk+l−mim−l+1...im

Tensor contractions reduce to matrix multiplication via index
folding (let [ijk] denote a group of 3 indices folded into one),

c[i1...im−l],[im−l+1...im] =∑
[j1...jk+l−m]

a[i1...im−l],[j1...jk+l−m] · b[j1...jk+l−m],[im−l+1...im]

so here A, B, and C can be treated simply as matrices.

6 / 26 Edgar Solomonik Cyclops Tensor Framework 6/ 26

Coupled Cluster Algorithms Performance Conclusions

Tensor symmetry

Tensors can have symmetry e.g.

a(ij)k = a(ji)k or a(ij)k = −a(ji)k

I will denote symmetric groups of indices as (ab...). We now might
face contractions like

c(ij)kl =
∑
pq

a(ij)(pq) · b(pk)(ql)

where the computational graph G can be thought of as a 6D
tensor with entries g(ij)klpq = (c(ij)kl , a(ij)(pq), b(pk)(ql)). There are
two things that can happen to symmetries during a contraction:

preserved, e.g. g(ij)klpq = g(ji)klpq

broken, e.g. b(pk)(ql) = b(pk)(lq) but g(ij)k lpq 6= g(ij)kqpl

7 / 26 Edgar Solomonik Cyclops Tensor Framework 7/ 26

Coupled Cluster Algorithms Performance Conclusions

NWChem approach to contractions

A high-level description of NWChem’s algorithm for tensor
contractions:

data layout is abstracted away by the Global Arrays framework

Global Arrays uses one-sided communication for data
movement

packed tensors are stored in blocks

for each contraction, each process does a subset of the block
contractions

each block is transposed and unpacked prior to contraction

dynamic load balancing is employed among processors

8 / 26 Edgar Solomonik Cyclops Tensor Framework 8/ 26

Coupled Cluster Algorithms Performance Conclusions

Cyclops Tensor Framework (CTF) approach to contractions

A high-level description of CTF’s algorithm for tensor contractions:

packed tensors are decomposed cyclically among toroidal
processor grids

MPI collectives are used for all communication

for each contraction, a distributed layout is selected based on
internal performance models

performance model considers all possible execution paths

before contraction, tensors are redistributed to a new layout

if there is enough memory, the tensors are (partially) unpacked

all preserved symmetries and non-symmetric indices are folded
in preparation for matrix multiplication

nested distributed matrix multiply algorithms are used to
perform the contraction in a load-balanced manner

9 / 26 Edgar Solomonik Cyclops Tensor Framework 9/ 26

Coupled Cluster Algorithms Performance Conclusions

Blocked vs block-cyclic vs cyclic decompositions

Blocked layout Block-cyclic layout Cyclic layout

Red denotes padding / load imbalanceGreen denotes fill (unique values)

10 / 26 Edgar Solomonik Cyclops Tensor Framework 10/ 26

Coupled Cluster Algorithms Performance Conclusions

Virtualization

Matrix multiply on 2x3 processor grid. Red lines represent
virtualized part of processor grid. Elements assigned to blocks by

cyclic phase.

X =

A
B

C

11 / 26 Edgar Solomonik Cyclops Tensor Framework 11/ 26

Coupled Cluster Algorithms Performance Conclusions

3D tensor mapping

12 / 26 Edgar Solomonik Cyclops Tensor Framework 12/ 26

Coupled Cluster Algorithms Performance Conclusions

A simple data layout

Replicated, distributed nonsymmetric tensor (processor grid)
of nonsymmetric tensors (virtual grid)

of symmetric tensors (folded broken symmetries)
of matrices (unfolded broken and folded preserved symmetries)

The layout typically changes for each tensor between each
contraction.

13 / 26 Edgar Solomonik Cyclops Tensor Framework 13/ 26

Coupled Cluster Algorithms Performance Conclusions

Tensor redistribution

Our symmetric tensor data layout has a global ordering and a local
ordering

the local data is not in global order

cannot compute local data index from global index

cannot compute global data index from local index

can iterate over local data and obtain global index

can iterate over global data and obtain local index

Given these constraints, it is simplest to compute the global index
of each piece of data and sort.

14 / 26 Edgar Solomonik Cyclops Tensor Framework 14/ 26

Coupled Cluster Algorithms Performance Conclusions

General data redistribution

We use an algorithm faster than sorting for redistribution

1 iterate over the local data and count where the data must be
sent

2 communicate counts and compute prefix sums to obtain
offsets

3 iterate over the local data in global order and bin it

4 exchange the data (MPI all to all v)

5 iterate over the new local data in global order and retrieve it
from bins

This method is much faster, because it does not explicitly form
and communicate keys for the data.

15 / 26 Edgar Solomonik Cyclops Tensor Framework 15/ 26

Coupled Cluster Algorithms Performance Conclusions

Threaded general redistribution

In order to hide memory latency and reduce integer operations it is
imperative to thread the redistribution kernel

prefix sums and counts are trivial to thread

to thread the iterator over data, we must give each thread
different global indices

each thread moves the local data corresponding to a global
index partition, preserving the ordering

16 / 26 Edgar Solomonik Cyclops Tensor Framework 16/ 26

Coupled Cluster Algorithms Performance Conclusions

Interface and code organization

the CTF codebase is currently 31,345 lines of C++ code

CTF provides functionality for general tensor contractions,
including a contraction domain-specific language (DSL)

Aquarius is a quantum chemistry package being developed by
Devin Matthews

uses CTF for parallel tensor contraction execution
provides a DSL for spin-integrated tensor contractions
gives implementations of CC methods including other
necessary components (e.g. SCF)

efforts are underway to also integrate CTF into the QChem
package

17 / 26 Edgar Solomonik Cyclops Tensor Framework 17/ 26

Coupled Cluster Algorithms Performance Conclusions

CCSD code using our domain specific language

18 / 26 Edgar Solomonik Cyclops Tensor Framework 18/ 26

Coupled Cluster Algorithms Performance Conclusions

Sequential and multi-threaded performance comparison

CCSD performance on a Xeon E5620, single threaded, Intel MKL.
Entries are average time for one CCSD iteration, for the given
number of virtual (nv) and occupied (no) orbitals (electrons).

nv = 110 nv = 94 nv = 71
no = 5 no = 11 no = 23

NWChem 1 thread 6.80 sec 16.8 sec 49.1 sec

CTF 1 thread 23.6 sec 32.5 sec 59.8 sec

NWChem 8 threads 5.21 sec 8.60 sec 18.1 sec

CTF 8 threads 9.12 sec 9.37 sec 18.5 sec

19 / 26 Edgar Solomonik Cyclops Tensor Framework 19/ 26

Coupled Cluster Algorithms Performance Conclusions

A simple tensor contraction

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

4096 8192 16384 32768 65536 131072 262144

Te
ra

flo
p/

s

#cores

BG/Q matrix multiplication

CTF
Scalapack

Complex matrix multiplication (ZGEMM) of 32K-by-32K matrices
benefits greatly from topology-aware mapping on BG/Q.

20 / 26 Edgar Solomonik Cyclops Tensor Framework 20/ 26

Coupled Cluster Algorithms Performance Conclusions

Comparison with NWChem on Cray XE6

CCSD iteration time on 64 nodes of Hopper:

system # electrons # orbitals CTF NWChem

w5 25 205 14 sec 36 sec

w7 35 287 90 sec 178 sec

w9 45 369 127 sec -

w12 60 492 336 sec -

On 128 nodes, NWChem completed w9 in 223 sec, CTF in 73 sec.

21 / 26 Edgar Solomonik Cyclops Tensor Framework 21/ 26

Coupled Cluster Algorithms Performance Conclusions

Blue Gene/Q up to 1250 orbitals, 250 electrons

 100

 200

 300

 400

 500

 600

8192 16384 32768 65536 131072

Te
ra

flo
p/

s

#cores

CCSD weak scaling on Mira (BG/Q)

Aquarius/CTF

22 / 26 Edgar Solomonik Cyclops Tensor Framework 22/ 26

Coupled Cluster Algorithms Performance Conclusions

Coupled Cluster efficiency on Blue Gene/Q

 0

 0.2

 0.4

 0.6

 0.8

 1

512 1024 2048 4096 8192

Fr
ac

tio
n

of
 p

ea
k

flo
ps

#nodes

CCSD weak scaling on Mira (BG/Q)

Aquarius/CTF

23 / 26 Edgar Solomonik Cyclops Tensor Framework 23/ 26

Coupled Cluster Algorithms Performance Conclusions

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and
1000 orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
nv -orbitals, no-electrons, p-processors, M-local memory size

kernel % of time complexity architectural bounds

DGEMM 45% O(n4vn
2
o/p) flops/mem bandwidth

broadcasts 20% O(n4vn
2
o/p
√
M) multicast bandwidth

prefix sum 10% O(p) allreduce bandwidth

data packing 7% O(n2vn
2
o/p) integer ops

all-to-all-v 7% O(n2vn
2
o/p) bisection bandwidth

tensor folding 4% O(n2vn
2
o/p) memory bandwidth

24 / 26 Edgar Solomonik Cyclops Tensor Framework 24/ 26

Coupled Cluster Algorithms Performance Conclusions

Performance breakdown on Cray XE6

Performance data for a CCSD iteration with 100 electrons and 500
orbitals on 256 nodes of Hopper
4 processes per node, 6 threads per process
Total time: 9 mins
v -orbitals, o-electrons

kernel % of time complexity architectural bounds

DGEMM 21% ⇓ 24% O(v4o2/p) flops/mem bandwidth

broadcasts 32% ⇑ 12% O(v4o2/p
√
M) multicast bandwidth

prefix sum 7% ⇓ 3% O(p) allreduce bandwidth

data packing 10% ⇑ 3% O(v2o2/p) integer ops

all-to-all-v 8% O(v2o2/p) bisection bandwidth

tensor folding 4% O(v2o2/p) memory bandwidth

25 / 26 Edgar Solomonik Cyclops Tensor Framework 25/ 26

Coupled Cluster Algorithms Performance Conclusions

Future Work

Cyclops Tensor Framework

CCSDT and CCSDTQ implementation

EOM-CC (excited state methods)

sparse tensor support

support for matlab-like tensor cuts (e.g.
A[2 : 10, 3 : 15, 10 : 15])

improvements to the handling of broken symmetries

For more information and complete code see
ctf.cs.berkeley.edu

26 / 26 Edgar Solomonik Cyclops Tensor Framework 26/ 26

ctf.cs.berkeley.edu

Backup slides

27 / 26 Edgar Solomonik Cyclops Tensor Framework 27/ 26

Cyclic decomposition in CTF

Cyclical distribution is fundamental to CTF, hence the name
Cyclops (cyclic-operations).
Given a vector v of length n on p processors

in a blocked distribution process pi owns
{vi ·n/p+1, . . . v(i+1)·n/p}
in a cyclic distribution process pi owns {vi , v2i , . . . v(n/p)i}

A cyclic distribution is associated with a phase along each
dimension (for the vector above this was p). The main advantage
from this distribution is that each subtensor can retain packed
structure with only minimal padding.
CTF assumes all subtensor symmetries have index relations of the
form ≤ and not <, so in effect, diagonals are stored for
skew-symmetric tensors.

28 / 26 Edgar Solomonik Cyclops Tensor Framework 28/ 26

Sequential tensor contractions

A cyclic distribution provides a vital level of abstraction, because
each subtensor contraction becomes a packed contraction of the
same sort as the global tensor contraction but of smaller size.
Given a sequential packed contraction kernel, CTF can parallelize
it automatically. Further, because each subcontraction is the same,
the workload of each processor is the same. The actual sequential
kernel used by CTF employs the following steps

1 if there is enough memory, unpack broken symmetries

2 perform a nonsymmetric transpose, to make all indices of
non-broken symmetry be the leading dimensions

3 use a naive kernel to iterate though indices with broken
symmetry and call BLAS GEMM for the leading dimensions

29 / 26 Edgar Solomonik Cyclops Tensor Framework 29/ 26

Multidimensional processor grids

CTF supports tensors and processor grids of any dimension
because mapping a symmetric tensor to a processor grid of the
same dimension preserves symmetric structure with minimal
virtualization and padding. Processor grids are defined by

a base grid, obtained from the physical topology or from
factorizing the number of processors

folding all possible combinations of adjacent processor grid
dimensions

Tensors are contracted on higher dimensional processor grids by

mapping an index shared by two tensors in the contraction to
different processor grid dimensions

running a distributed matrix multiplication algorithm for each
such ’mismatched’ index

replicating data along some processor dimensions ’a la 2.5D’

30 / 26 Edgar Solomonik Cyclops Tensor Framework 30/ 26

Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

τ abij = tabij +
1

2
Pa
bP

i
j t

a
i t

b
j ,

F̃m
e = f me +

∑
fn

vmn
ef t fn ,

F̃ a
e = (1− δae)f ae −

∑
m

F̃m
e tam −

1

2

∑
mnf

vmn
ef tafmn +

∑
fn

vanef t
f
n ,

F̃m
i = (1− δmi)f

m
i +

∑
e

F̃m
e tei +

1

2

∑
nef

vmn
ef tefin +

∑
fn

vmn
if t fn ,

31 / 26 Edgar Solomonik Cyclops Tensor Framework 31/ 26

Our CCSD factorization

W̃mn
ei = vmn

ei +
∑
f

vmn
ef t fi ,

W̃mn
ij = vmn

ij + P i
j

∑
e

vmn
ie tej +

1

2

∑
ef

vmn
ef τ

ef
ij ,

W̃ am
ie = vamie −

∑
n

W̃mn
ei tan +

∑
f

vma
ef t fi +

1

2

∑
nf

vmn
ef tafin ,

W̃ am
ij = vamij + P i

j

∑
e

vamie tej +
1

2

∑
ef

vamef τ
ef
ij ,

zai = f ai −
∑
m

F̃m
i tam +

∑
e

f ae t
e
i +

∑
em

vma
ei tem +

∑
em

vaeim F̃m
e +

1

2

∑
efm

vamef τ
ef
im −

1

2

∑
emn

W̃mn
ei teamn,

zabij = vabij + P i
j

∑
e

vabie tej + Pa
bP

i
j

∑
me

W̃ am
ie tebmj − Pa

b

∑
m

W̃ am
ij tbm + Pa

b

∑
e

F̃ a
e t

eb
ij − P i

j

∑
m

F̃m
i tabmj +

1

2

∑
ef

vabef τ
ef
ij +

1

2

∑
mn

W̃mn
ij τ abmn,

32 / 26 Edgar Solomonik Cyclops Tensor Framework 32/ 26

	Coupled Cluster
	Coupled Cluster theory
	Tensor contractions

	Algorithms
	NWChem
	Cyclops Tensor Framework

	Performance
	Sequential performance
	Parallel scalability

	Conclusions
	Future Work

	Appendix

