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Algorithmic roots: communication avoidance

Targeting leadership class platforms (e.g. BG/Q)

I Large amount of distributed memory parallelism

I Hierarchical parallelism

I Communication architecture lagging behind compute
architecture

Architectures motivates communication-avoiding algorithms which
consider

I bandwidth cost (amount of data communicated)

I latency cost (number of messages or synchronizations)

I critical path (communication load balance)

I topology (communication contention)
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Application roots: electronic structure calculations

Electronic structure calculations seek approximate solution to the
Schrodinger equation

i~
∂

∂t
|Ψ〉 = Ĥ|Ψ〉

which satisfy
Ĥ|Ψ〉 = E |Ψ〉

often we want the ground-state (lowest-energy) wave-function Ψ0,
such that

〈Ψ0|Ĥ|Ψ0〉 = E0.
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Density Function Theory (DFT)
DFT uses the fact that the ground-state wave-function Ψ0 is a
unique functional of the particle density n(~r)

Ψ0 = Ψ[n0]

Since Ĥ = T̂ + V̂ + Û, where T̂ , V̂ , and Û, are the kinetic,
potential, and interaction contributions respectively,

E [n0] = 〈Ψ[n0]|T̂ [n0] + V̂ [n0] + Û[n0]|Ψ[n0]〉
DFT assumes Û = 0, and solves the Kohn-Sham equations[

− ~2

2m
∇2 + Vs(~r)

]
φi (~r) = εiφi (~r)

where Vs has a exchange-correlation potential correction,

Vs(~r) = V (~r) +

∫
e2ns(~r ′)

|~r − ~r ′|
d3r ′ + VXC [ns(~r)]
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Density Function Theory (DFT), contd.

The exchange-correlation potential VXC is approximated by DFT,
by a functional which is often system-dependent. This allows the
following iterative scheme

1. Given an (initial guess) n(~r) calculate Vs via Hartree-Fock
and functional

2. Solve (diagonalize) the Kohn-Sham equation to obtain each φi

3. Compute a new guess at n(~r) based on φi

Due to the rough approximation of correlation and exchange DFT
is good for weakly-correlated systems (which appear in solid-state
physics), but suboptimal for strongly-correlated systems.
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Linear algebra in DFT

DFT requires a few core numerical linear algebra kernels

I Matrix multiplication (of rectangular matrices)

I Linear equations solver

I Symmetric eigensolver (diagonalization)

We proceed to study schemes for optimization of these algorithms.
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Matrix multiplication (MM)

We consider matrix multiplication

C [i , j ] =
n−1∑
k=0

A[i , k]B[k , j ]

which in algorithmic form is

for i = 0 to n − 1 do
for j = 0 to n − 1 do

for k = 0 to n − 1 do
C [i , j ]+ = A[i , k] · B[k , j ]
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SUMMA/Cannon blocked algorithm for MM

On a l-by-l processor grid, with b = n/l

for k = 0 to n − 1 do
for p = 0 to l − 1 in parallel do

for q = 0 to l − 1 in parallel do
broadcast A[:, k]
broadcast B[k , :]
for i = 0 to b − 1 do
for j = 0 to b − 1 do
C [i + pb, j + qb]+ = A[i + pb, k] · B[k , j + qb]
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SUMMA/Cannon cyclic algorithm for MM
Replace

C [i + pb, j + qb]+ = A[i + pb, k] · B[k , j + qb]

with
C [il + p, jl + q]+ = A[il + p, k] · B[k , jl + q]

for k = 0 to n − 1 do
for p = 0 to l − 1 in parallel do

for q = 0 to l − 1 in parallel do
broadcast A[:, k]
broadcast B[k , :]
for i = 0 to b − 1 do
for j = 0 to b − 1 do
C [il + p, jl + q]+ = A[il + p, k] · B[k, jl + q]
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SUMMA/Cannon costs

With blocking, on p processors these algorithms move A and B
l =
√
p times. Each process own n2/p of the matrices, so the

bandwidth cost is
W = O(n2/

√
p)

and the number of synchronizations necessary is

S = O(
√
p).

For rectangular matrices with dimensions n,m, k , we select an
algorithm on process grid l1-by-l2 that communicates A and B, or
A and C , or B and C , for a cost of

W = O(min
l1,l2

(nml1 + mkl2, nml1 + nkl2,mkl1 + nkl2)/p)
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3D matrix multiplication

On a l-by-l-by-l processor grid, with b = n/l

broadcast A
broadcast B
for r = 0 to l − 1 in parallel do

for p = 0 to l − 1 in parallel do
for q = 0 to l − 1 in parallel do

for k = 0 to b − 1 do
for i = 0 to b − 1 do
for j = 0 to b − 1 do
C [i+pb, j+qb]+ = A[i+pb, k+rb]·B[k+rb, j+qb]

reduce C
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3D matrix multiplication with block notation

On a l-by-l-by-l processor grid, with b = n/l

broadcast A
broadcast B
for r = 0 to l − 1 in parallel do

for p = 0 to l − 1 in parallel do
for q = 0 to l − 1 in parallel do

C [p, q]+ = A[p, r ] · B[r , q]
reduce C
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3D MM costs

On p processors these algorithms move A and B and C once. Each
process own n2/p2/3 of the matrices, so the bandwidth cost is

W = O(n2/p2/3)

and the number of synchronizations necessary is

S = O(1).

However, the algorithm requires storage (memory usage) of

M = Ω(n2/p2/3)

which is p1/3 more than minimal.
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2.5D matrix multiplication

On a l-by-l-by-c processor grid, with b = n/l

for s = 0 to l/c − 1 do
broadcast A
broadcast B
for r = 0 to l − 1 in parallel do

for p = 0 to l − 1 in parallel do
for q = 0 to l − 1 in parallel do
C [p, q]+ = A[p, sr ] · B[sr , q]

reduce C
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2.5D MM costs
On p processors these algorithms move A and B,

√
p/c3 times

and C once. Each process own n2√
cp of the matrices, so the

bandwidth cost is

W = O

(
n2
√
cp

)
and the number of synchronizations necessary is

S = O

(√
p/c3

)
.

while the memory is now

M = Ω(cn2/p)

which is tunable given the architectural constraint, allowing better
asymptotic strong scaling.
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3D rectangular matrix multiplication

On a l1-by-l2-by-l3 processor grid, with b = n/l1 = m/l2 = k/l3

broadcast A
broadcast B
for r = 0 to l3 − 1 in parallel do

for p = 0 to l1 − 1 in parallel do
for q = 0 to l2 − 1 in parallel do

C [p, q]+ = A[p, r ] · B[r , q]
reduce C
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Blocking matrix multiplication

A

B
A

B

A

B

A
B
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2D matrix multiplication
[Cannon 69],

[Van De Geijn and Watts 97]

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

16 CPUs (4x4)
O(n3/p) flops

O(n2/
√
p) words moved

O(
√
p) messages

O(n2/p) bytes of memory
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3D matrix multiplication
[Agarwal et al 95],

[Aggarwal, Chandra, and Snir 90],

[Bernsten 89], [McColl and Tiskin 99]

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

64 CPUs (4x4x4)

4 copies of matrices

O(n3/p) flops

O(n2/p2/3) words moved

O(1) messages

O(n2/p2/3) bytes of memory
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2.5D matrix multiplication
[McColl and Tiskin 99]

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

32 CPUs (4x4x2)

2 copies of matrices

O(n3/p) flops

O(n2/
√
c · p) words moved

O(
√

p/c3) messages

O(c · n2/p) bytes of memory
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2.5D MM on 65,536 cores
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Solutions to linear systems of equations

We want to solve some matrix equation

A · X = B

where A and B are known. Can solve by factorizing A = LU (L
lower triangular and U upper triangular) via Gaussian elimination,
then computing TRSMs

X = U−1L−1B

via triangular solves. If A is symmetric positive definite, we can use
Cholesky factorization. Cholesky and TRSM are no harder than
LU.
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Non-pivoted LU factorization

for k = 0 to n − 1 do
U[k , k : n − 1] = A[k , k : n − 1]
for i = k + 1 to n − 1 do

L[i , k] = A[i , k]/U[k , k]
for j = k + 1 to n − 1 do

A[i , j ]− = L[i , k] · U[k , j ]

This algorithm has a dependency that requires

k ≤ i , k ≤ j .
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Non-pivoted 2D LU factorization
On a l-by-l process grid

Algorithm 1 [L,U] = 2D-LU(A)

for k = 0 to n − 1 do
Factorize A[k , k] = L[k, k] · U[k , k]
Broadcast L[k , k] and U[k , k]
for p = 0 to l − 1 in parallel do

solve L[p, k] = A[p, k]U[k , k]−1

for q = 0 to l − 1 in parallel do
solve U[k , q] = L[k, k]−1A[1, k]

Broadcast L[p, k] and U[k , q]
for p = 0 to l − 1 in parallel do
for q = 0 to l − 1 in parallel do
A[p, q]− = L[p, k] · U[k, q]
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3D recursive non-pivoted LU and Cholesky

A 3D recursive algorithm with no pivoting [A. Tiskin 2002]
I Tiskin gives algorithm under the BSP model

I Bulk Synchronous Parallel
I considers communication and synchronization

I We give an alternative distributed-memory adaptation and
implementation

I Also, we have a new lower-bound for the latency cost
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3D non-pivoted LU and Cholesky

On a l-by-l-by-l process grid

for r = 0 to l − 1 do
[L[r , r ],U[r , r ]] = 2D-LU(A[r , r ])
Broadcast L[k , k] and U[k , k]
[L[r + 1 : l − 1, r ]] = 2D-TRSM(A[r + 1 : l − 1, r ],U[r , r ]);
[U[r , r + 1 : l − 1]] = 2D-TRSM(A[r , r + 1 : l − 1],L[r , r ]);
for s = 0 to l − 1 in parallel do

Broadcast L[p, rs] and U[rs, q]
for p = 0 to l − 1 in parallel do
for q = 0 to l − 1 in parallel do

A[p, q]− = L[p, rs] · U[rs, q]
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A
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L

U
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2D block-cyclic decomposition
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2D block-cyclic LU factorization
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2.5D LU factorization
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2.5D LU factorization
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2.5D LU strong scaling (without pivoting)
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2.5D LU with pivoting

A = P · L · U, where P is a permutation matrix

I 2.5D generic pairwise elimination (neighbor/pairwise pivoting
or Givens rotations (QR)) [A. Tiskin 2007]

I pairwise pivoting does not produce an explicit L
I pairwise pivoting may have stability issues for large matrices

I Our approach uses tournament pivoting, which is more stable
than pairwise pivoting and gives L explicitly

I pass up rows of A instead of U to avoid error accumulation
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Tournament pivoting

Partial pivoting is not communication-optimal on a blocked matrix

I requires message/synchronization for each column

I O(n) messages needed

Tournament pivoting is communication-optimal

I performs a tournament to determine best pivot row candidates

I passes up ’best rows’ of A
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2.5D LU factorization with tournament pivoting
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2.5D LU factorization with tournament pivoting
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2.5D LU factorization with tournament pivoting
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2.5D LU factorization with tournament pivoting
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2.5D LU on 65,536 cores
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Symmetric eigensolve via QR

To solve the symmetric eigenproblem on matrix A, we need to
diagonalize

A = UDUT

where U are the singular vectors and D is the singular values. This
can be done by a series of two-sided orthogonal transformations

A = U1U2 . . .UkDU
T
k . . .UT

2 UT
1

The process may be reduced to three stages: a QR factorization
reducing to banded form, a reduction from banded to tridiagonal,
and a tridiagonal eigensolve. We consider the QR, which is the
most expensive step.
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3D QR factorization

A = Q · R where Q is orthogonal R is upper-triangular

I 3D QR using Givens rotations (generic pairwise elimination) is
given by [A. Tiskin 2007]

I Tiskin minimizes latency and bandwidth by working on
slanted panels

I 3D QR cannot be done with right-looking updates as 2.5D LU
due to non-commutativity of orthogonalization updates

Edgar Solomonik Cyclops Tensor Framework 48/ 73



Introduction
Communication-avoiding linear algebra

Communication-avoiding tensor computations
Conclusion

Motivation: Density Functional Theory
Matrix multiplication
Solving systems of linear equations
Solving the symmetric eigenvalue problem

3D QR factorization using the YT representation

The YT representation of Householder QR factorization is more
work efficient when computing only R

I We give an algorithm that performs 2.5D QR using the YT
representation

I The algorithm performs left-looking updates on Y

I Householder with YT needs fewer computation (roughly 2x)
than Givens rotations
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3D QR using YT representation
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Latency-optimal 2.5D QR

To reduce latency, we can employ the TSQR algorithm

1. Given n-by-b panel partition into 2b-by-b blocks

2. Perform QR on each 2b-by-b block

3. Stack computed Rs into n/2-by-b panel and recursive

4. Q given in hierarchical representation

Need YT representation from hierarchical Q...
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YT reconstruction

Yamamoto et al.

I Take Y to be the first b columns of Q minus the identity

I Define T = (I − Q1)−1

I Sacrifices triangular structure of T and Y .

Our first attempt

LU(R−A) = LU(R−(I−YTY T )R) = LU(YTY TR) = (Y )·(TY TR)

was unstable due to being dependent on the condition number of
R. However, performing LU on Yamamoto’s T seems to be stable,

LU(I−Q1) = LU(I−(I−Y1TY
T
1 )) = LU(Y1TY

T
1 ) = (Y1)·(TY T

1 )

and should yield triangular Y and T .
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3D algorithms on BG/Q
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3D algorithms for DFT

3D matrix multiplication is integrated into QBox.

I QBox is a DFT code developed by Erik Draeger et al.

I Depending on system/functional can spend as much as 80%
time in MM

I Running on most of Sequoia and getting significant speed up
from 3D

I 1.75X speed-up on 8192 nodes 1792 gold atoms, 31
electrons/atom

I Eventually hope to build and integrate a 3D eigensolver into
QBox
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Coupled Cluster (CC)

Coupled Cluster is a method for electronic structure calculations of
strongly-correlated systems. CC rewrites the wave-function |Ψ〉 as
an excitation operator T̂ applied to the Slater determinant |Ψ0〉

|Ψ〉 = eT̂ |Ψ0〉

where T̂ is as a sum of T̂n (the n’th excitation operators)

T̂CCSD = T̂1 + T̂2

T̂CCSDT = T̂1 + T̂2 + T̂3

T̂CCSDTQ = T̂1 + T̂2 + T̂3 + T̂4
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Coupled Cluster (CC)
The CC amplitudes T̂n can be solved via the coupled equations

〈Ψab...
ij ... |e−T̂HeT̂ |Ψ0〉

where we expand out the excitation operator

eT̂ = 1 + T̂ +
T̂ 2

2!
. . .

By Wick’s theorem only fully contracted terms of the expansion
will be non-zero, and diagrammatic or algebraic derivations yield
many terms such as ∑

klcd

〈kl ||cd〉T c
k T

a
l T

dbTij

which can be factorized into two-term contractions.
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A parallel algorithm for any dimensional tensor

Dense tensor contractions can be reduced to matrix multiplication

I tensors must be transposed (indices must be reordered)

I parallelized via 2D/3D algorithms

Alternatively, we can keep tensors in high-dimensional layout and
perform recursive SUMMA

I replicate along any dimension for 3D

I SUMMA along each dimension where indices are mismatched.
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4D tensor contraction

On a l-by-l-by-l-by-l processor grid, with b = n/l

for p = 0 to n − 1 do
for q = 0 to n − 1 do
for r = 0 to l − 1 in parallel do

for s = 0 to l − 1 in parallel do
broadcast A[p, :, :, :]
broadcast B[:, p, :, :]
for t = 0 to l − 1 in parallel do

for u = 0 to l − 1 in parallel do
broadcast A[:, :, q, :]
broadcast B[:, :, :, q]
C [r , s, t, i ]+ = A[p, s, q, i ] · B[r , p, t, q]
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Tensor symmetry
Most physical tensors of interest have symmetric indices

W ab = W ba

or skew-symmetric indices

W ab = −W ba.

Multi-index symmetries and partial index symmetries also arise, e.g.

W ab
ijkl

where (a, b) are permutationally symmetric and (i , j , k, l) and
permutationally symmetric. Symmetry is a vital computational
consideration, since it can save computation and much memory
scaling as d! where d is the number of symmetric indices.
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Symmetric contractions
Consider the contraction

C ab
ij =

∑
c

Aac
ij · Bcb,

if A and C both have i , j symmetry (symmetry preserved), compute

C ab
i<j =

∑
c

Aac
i<j · Bcb

if B is symmetric in (c , b) (broken symmetry), compute

C ab
ij =

∑
c

Aac
ij · Bc<b + Aac

ij · Bb≤c

if C is skew-symmetric in (a, b) (broken symmetry), symmetrize

C a<b
ij =

∑
c

Aac
ij · Bcb − Abc

ij · Bca
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Cyclops Tensor Framework (CTF)

Big idea:

I decompose tensors cyclically among processors

I pick cyclic phase to preserve partial/full symmetric structure

Interface:
C [”abij”]+ = A[”acij”] · B[”cb”]

with symmetries pre-specified for A, B, and C .

Edgar Solomonik Cyclops Tensor Framework 61/ 73



Introduction
Communication-avoiding linear algebra

Communication-avoiding tensor computations
Conclusion

Motivation: Coupled Cluster
Tensor contractions
Symmetric and skew-symmetric tensors

NWChem blocked approach

for k = 0 to n − 1 do
for p = 0 to l − 1 in parallel do

for q = 0 to p − 1 in parallel do
broadcast A[:, k]
broadcast B[k , :]
for i = 0 to b − 1 do
for j = 0 to b − 1 do
C [i + pb, j + qb]+ = A[i + pb, k] · B[k , j + qb]
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Cyclops TF cyclic approach

for k = 0 to n − 1 do
for p = 0 to l − 1 in parallel do

for q = 0 to l − 1 in parallel do
broadcast A[:, k]
broadcast B[k , :]
for i = 0 to b − 1 do
for j = 0 to i − 1 do

C [il + p, jl + q]+ = A[il + p, k] · B[k, jl + q]
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Blocked vs block-cyclic vs cyclic decompositions

Blocked layout Block-cyclic layout Cyclic layout

Red denotes padding / load imbalanceGreen denotes fill (unique values)
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3D tensor contraction
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3D tensor cyclic decomposition
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3D tensor mapping
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A cyclic layout is still challenging

I In order to retain partial symmetry, all symmetric dimensions
of a tensor must be mapped with the same cyclic phase

I The contracted dimensions of A and B must be mapped with
the same phase

I And yet the virtual mapping, needs to be mapped to a
physical topology, which can be any shape
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Virtual processor grid dimensions

I Our virtual cyclic topology is somewhat restrictive and the
physical topology is very restricted

I Virtual processor grid dimensions serve as a new level of
indirection

I If a tensor dimension must have a certain cyclic phase, adjust
physical mapping by creating a virtual processor dimension

I Allows physical processor grid to be ’stretchable’
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Virtual processor grid construction

Matrix multiply on 2x3 processor grid. Red lines represent
virtualized part of processor grid. Elements assigned to blocks by

cyclic phase.

X =

A
B

C
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3D algorithms for tensors

We incorporate data replication for communication minimization
into CTF

I Replicate only one tensor/matrix (minimize bandwidth but
not latency)

I Autotune over mappings to all possible physical topologies

I Select mapping with least amount of communication

I Achieve minimal communication for tensors of widely different
sizes
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Preliminary Coupled Cluster results on Blue Gene/Q

A Coupled Cluster with Double excitations (CCD) implementations
is up and running

I Already scaled on up to 1024 nodes of BG/Q, up to 480
virtual orbitals

I Preliminary results already favorable performance with respect
to NWChem

I Spending 30-40% of time in DGEMM, with good strong and
weak scalability
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3D eigensolver

I Working on formalization and error proof of YT reconstruction

I Plan to implement 3D QR and 3D symmetric eigensolve

I Integrate with QBox

Cyclops Tensor Framework

I Implement CCSD, CSSD(T), CCSDT, CSSDTQ

I Merge with SCF and eigensolver codes

I Sparse tensors

I Consider multi-term factorization/other tensor computations

Edgar Solomonik Cyclops Tensor Framework 73/ 73



Rectangular collectives

Backup slides

Edgar Solomonik Cyclops Tensor Framework 74/ 73



Rectangular collectives

Performance of multicast (BG/P vs Cray)
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Rectangular collectives

Why the performance discrepancy in multicasts?

I Cray machines use binomial multicasts
I Form spanning tree from a list of nodes
I Route copies of message down each branch
I Network contention degrades utilization on a 3D torus

I BG/P uses rectangular multicasts
I Require network topology to be a k-ary n-cube
I Form 2n edge-disjoint spanning trees

I Route in different dimensional order
I Use both directions of bidirectional network
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