
Classical Computer Science and Quantum Computing:
High Performance Computing and Quantum Simulation

Edgar Solomonik

Department of Computer Science, University of Illinois at Urbana-Champaign

NSF Workshop: Enabling Quantum Leap

Quantum algorithms for quantum chemistry and materials

Alexandria, VA

January 23, 2019

Enabling Quantum Leap HPC and Quantum Computing 1/19



Outline

1 Quantum Circuit Emulation

2 Quantum Chemistry with HPC

3 Tensor Networks

4 Broadening Computer Science Participation and Education in Quantum

Enabling Quantum Leap HPC and Quantum Computing 2/19



Applications of Quantum Circuit Emulation

The best techniques for classical emulation of a general quantum
circuit have exponential cost in the number of qubits

However, HPC resources enable emulation of general quantum circuits
with roughly 50-qubits, comparable to NISQ devices

Quantum circuit emulation is useful in the near term as it enables
small-scale quantum algorithm testing
modelling effects of noise in quantum circuits
verification of NISQ-scale quantum circuits (e.g. for Google’s random
circuit sampling scheme1)
development of methods for efficient approximation of specific quantum
circuits (on specific sets of inputs)
tuning of hybrid quantum-classical algorithms (e.g. variational quantum
eigensolver for quantum chemistry2)

1Bouland, Fefferman, Nirkhe, and Vazirani arXiv:1803.04402
2Colless et al. Physical Review X 8.1 (2018).
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Emulation of Quantum Gates and Quantum Circuits

Consider an n-qubit quantum state

|ψ〉 =
∑

i∈{0,1}n

tψi |i1 · · · in〉 with ti ∈ C

Quantum circuits generally consist of 1-qubit and 2-qubit gates

|φ〉 = U (s)|ψ〉 ⇒ tφi1···in =
1∑

js=0
u

(s)
isjs

tψi1···is−1jsis+1···in

|φ〉 = U (s,t)|ψ〉 ⇒ tφi1···in =
1∑

js=0

1∑
jt=0

u
(s)
isitjsjt

tψi1···is−1jsis+1···it−1jtit+1···in

A quantum gate can be emulated as an O(2n)-cost tensor contraction

An n-qubit quantum circuit with depth D and O(nD) gates can be
simulated classically with O(nD2n) cost and O(2n) storage
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Lowering Memory Footprint in Quantum Circuit Emulation

Can improve cost, memory footprint, and parallelizability of emulation
Subsets of the circuit that work on independent sets of qubits
commute with one another
Improving storage overhead is possible via tensor slicing

For example, if part of a circuit U does not operate on the first qubit, we
can compute |φ〉 = U |ψ〉 by computing in sequence

tφ0i2···in =
1∑

j2···jn=0
ui2···inj2···jn

tψ0j2···jn

tφ1i2···in =
1∑

j2···jn=0
ui2···inj2···jnt

ψ
1j2···jn

expanding ui2···inj2···jn appropriately in terms of gates, e.g. if it consists
only of n− 1 single qubit gates

ui2···inj2···jn
=

n∏
k=2

u
(k)
ikjk
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Avoiding Communication in Quantum Circuit Emulation

Naive quantum circuit emulation has a low arithmetic intensity
(flop-byte ratio), requiring O(2n) memory traffic for O(2n) floating
point operations

Tensor slicing can improve this by applying multiple gates to a
subtensor that fits into fast/local memory

Alternatively, can use gate aggregation, combining gates to perform
fewer reads/writes of the amplitudes T ψ and T φ but increasing cost

These and other optimizations can be expressed via a tensor network
representation of a quantum circuit3,4

3Markov and Shi SIAM JC 2007
4Pednault et al. arXiv:1710.05867
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Specialized Quantum Circuit Emulation

If only a single amplitude (element of T ψ of |ψ〉 = U |0〉) is desired, the
Feynman algorithm can be used with O(nD) space and O(D4n) cost.
Further, for any k ≤ n, computation of a single amplitude of U |0〉 is
possible with cost O(n2nDk) and O(2n−k logD) memory5

Explicit calculation of amplitudes is strong circuit simulation
aforementioned methods can be classified as monotone simulators
approximate monotone simulation of general circuits has Ω(2n) cost6

Weak simulation, which samples the output distribution U |0〉 of a
circuit U , can be more efficient
Any quantum algorithm can be expressed with Clifford gates and t
phase-shift 1-qubit gates, with Clifford gates being cheap to emulate

For t = 0, strong simulation has polynomial cost Gottesman-Knill theorem
Strong simulation has O(2t/2) cost and weak has O(20.23t) cost7

5Aaronson and Chen arXiv:1612.05903
6Huang, Newman, and Szegedy arXiv:1804.01368
7Bravyi and Gosset arXiv:1601.07601
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Simulation of Noisy Circuits

NISQ devices are expected to suffer from the effect of noise, especially
with increasing circuit depth

Quantum error correction can be used to protect from noise, but
requires many physical qubits per logical qubit8

The presence of noise provides possibility of more efficient simulation
(e.g. under a uniform noise rate, generic random quantum circuits can
be efficiently simulated classically by tensor networks9)

One alternative avenue to error correction is the development of noise
resilient algorithms, which may be viable for physical simulation10

8Terhal arXiv:1302.3428
9Gao and Duan arXiv:1810.03176

10Isaac Kim arXiv:1703.0003
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Tensor Networks for Quantum Chemistry

Classical simulation of quantum chemistry involves many of the same
challenges as quantum circuit emulation

High-accuracy quantum chemistry requires approximation of quantum
states/wavefunctions

Memory footprint is of primary importance, leading to use of similar
techniques

CCSD(T) and CCSDT(Q) methods rely on tensor slicing

Many wavefunction methods require ‘factorization’ of tensor equations,
which have some similarity to optimization of contractions arising from
tensor networks of quantum circuits
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Tensors in quantum chemistry

Tensor contractions dominate cost of many wavefunction methods

Orbital transformations (tensor times matrix)

Dense tensor contractions in Post-Hartree-Fock methods
Møller-Plesset perturbation
configuration interaction
coupled cluster

Sparse tensors
localized orbitals (basis functions with compact support)
screening of elements

Tensor decomposition/factorization
density fitting
resolution of identity
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Frontiers of coupled cluster performance

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ
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Tensor Networks Problems and Software

Tensor networks bridge together quantum circuits, simulation of
physical quantum systems, and numerical optimization algorithms

They also provide a unified software base, with the main kernels being
tensor contractions and numerical matrix factorizations

Some examples of high-performance productive libraries for tensor algebra
in quantum chemistry (QC) and quantum information science (QIS) are
TCE (QC), ITensor (QIS), TiledArray (QC), Cyclops (QC+QIS)
Z["abij"] += V["ijab"]; // C++
Z.i("abij") << V.i("ijab") // Python
W["mnij"] += 0.5*W["mnef"]*T["efij"]; // C++
W.i("mnij") << 0.5*W.i("mnef")*T.i("efij") // Python
einsum ("mnef ,efij ->mnij",W,T) // numpy -style Python

These libraries support tensor transposition and contraction, (block)
sparsity, optimization of contraction order, and tensor decomposition

Classical problems on tensor networks: contraction and optimization
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Tensor Network Types

Different tensor networks arise within different problem domains

classical tensor decompositions: CP and Tucker11

1D/2D lattices for quantum systems: MPS (tensor train), PEPS, MERA

ti1···in ≈ w
(1)
(i1)W

(2)
(i2) · · ·W

(n−1)
(in−1)w

(n)
(in)

quantum chemistry: wavefunction ansatz dependent, e.g. tensor
hypercontraction12

vµνλσ ≈
∑
p,q

xpµxqνzpqxpλxqσ

11Kolda and Bader SIAM Review 2009
12Hohenstein, Kokkila, Parrish, and Martinez JCP 2013
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Tensor Decomposition Algorithms

Approximate contraction, as well as eigenvalue and fitting problems
with tensor networks can be cast as optimization algorithms
Most algorithms perform either a variant of gradient descent or
alternating least squares (ALS)
ALS (for MPS/PEPS → DMRG) is most effective for tensor networks

update each site/factor in network individually by quadratic optimization13

13Holtz, Rohwedder, and Schneider SISC 2012
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Accelerating Alternating Least Squares

Dimension trees amortize cost across quadratic subproblems
Randomization/sampling can reduce cost of SVD and contractions14

Multigrid/multilevel optimization employs hierarchy of networks15

Pairwise perturbation approximates ALS with less asymptotic cost16

14Battaglino, Ballard, and Kolda SIMAX 2018
15De Sterck and Miller SISC 2013
16Ma and S. arXiv:1811.10573
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Matrix Multiplication Algorithms from CP Decomposition

Fast algorithms for matrix multiplication correspond to CP decompositions

ci =
r∑
r=1

f
(C)
ir

(∑
j

f
(A)
jr aj

)(∑
k

f
(B)
kr bk

)

=
∑
j

∑
k

( r∑
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f
(C)
ir f

(A)
jr f

(B)
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)
ajbk

=
∑
j

∑
k

tijkajbk where tijk =
r∑
r=1

f
(C)
ir f

(A)
jr f

(B)
kr

For multiplication of n× n matrices C = AB,
T is n2 × n2 × n2, (in/out)puts are a=vec(A), b=vec(B), c=vec(C)
Classical algorithm has rank r = n3

Strassen’s algorithm has rank r ≈ nlog2(7)

For n = 2, CP rank is 7, for n = 3, optimal rank is open, r ∈ [19, 23]
Tiny size of problem may make it a candidate for quantum acceleration
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Broadening Participation in QIS and QC

Quantum information science is a young and growing field with a
time-critical need for broadening participation
Place emphasis on learnability of quantum information

quantum carries and sometimes prides itself in difficulty/sophistication,
which can inhibit confidence in students
students, especially underrepresented minorities and women, take more
positively and are more likely to pursue learning/challenges if the carry the
belief that knowledge and capability of understanding is not innate17

Place emphasis on applications of quantum computing (this focus has
been successful in broadening participation in CS18)
Create and foster an inclusive sense of community, make use codes of
conduct and supervision/mentorship to prevent exclusionary culture at
community events such as hackathons19

17Hoskins, Lopatto, and Stevens LSE 2011
18Eney, Lazowska, Martin, and Reges IEEE Computer, 2013
19Warner and Guo ICER 2017
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Computer Science Education in Quantum

The field of quantum computing and quantum information is
dominated by physicists and theoretical computer scientists
The frontier of quantum computing research has a growing need for
more practical software development and applied mathematics
Computer science students (at UIUC and similar departments) who
pursue quantum information primarily come through two pipelines

theoretical computer science PhD students who become interested in QIS
undergraduate double majors in physics and CS

Early education in quantum mechanics as part of CS core programs is
valuable (but trend seems to be going in the opposite direction with
CS+X programs with looser core requirements)
Programs often lack undergraduate-level pure QI courses and courses
in QI+physical simulation
Michael Nielsen and Isaac Chuang’s QC and QI textbook is more
accessible than David Griffiths’ QM to advanced CS undergraduates
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Overview and Conclusion

Quantum circuit emulation is valuable for quantum algorithm
development and quantum computer verification

Specialized quantum circuit simulation (leveraging specific gates and
noise) has interesting theoretical and practical potential

Capability of HPC systems in high-accuracy quantum chemistry
simulation should play part in hybrid quantum-classical algorithms

Tensor software provides a unified toolbox for quantum simulation

Faster numerical algorithms for tensor network optimization is an
active and promising area of research

Fast matrix multiplication is a fundamental problem that could benefit
from new quantum computing capabilities and tensor network methods

Broadening participation and rethinking education in QIS is necessary
to diversify and strengthen expertise in quantum computing
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