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Cyclops Tensor Framework Motivation

The problem

We want portable infrastructure and scalable algorithms for tensor-based
electronic structure methods

the problem is not ‘ill-posed’, small perturbations to the equations of
a method do not fundamentally change the computation

a ‘stable’ solution must provide a high-level abstraction that permits
rapid manipulation of the algebra

scalability must be achieved both for intranode (shared memory) and
internode (distributed memory) parallelism
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Cyclops Tensor Framework Motivation

Our solution

Cyclops (cyclic operations) Tensor Framework (CTF)

provides abstractions for symmetric tensors and symmetrized
contractions

selects best parallelization for each contraction based on runtime
performance models

leverages only portable building blocks: C++, MPI, BLAS, and
OpenMP

optimized for distributed networks, shared memory, and accelerators

open source, BSD license, https://github.com/solomonik/ctf
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Cyclops Tensor Framework Interface

Distributed-memory tensor objects

CTF is orchestrated by bulk synchronous operations on a set of processors

CTF::World dw(MPI_COMM_WORLD);

CTF tensors are defined to be distributed over such worlds

CTF::Tensor<> T(4,{m,m,n,n},{AS,NS,AS,NS},dw);

an ‘AS’ dimension is antisymmetric with the next (also ‘SY’ and ‘SH’)

tensors are templated by the element type (double by default)

custom algebraic structures (set, group, monoid, semiring, ring) may
be defined by the user
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Cyclops Tensor Framework Interface

Tensor algebra interface (credit: Devin Matthews)

CTF can express a tensor contraction like

Z ab
ij =

1

2
·W ab

ij + 2 · P(a, b)
∑
k

F a
k · T kb

ij

where P(a, b) implies antisymmetrization of index pair ab, as

Z["abij"] = 0.5*W["abij"];

Z["abij"] += 2.0*F["ak"]*T["kbij"];

for loops and summations implicit in syntax

P(a, b) is applied implicitly if Z is antisymmetric in ab

Z,F,T,W should all be defined on the same world and all processes
in the world must call the contraction bulk synchronously

user-defined (mixed-type) scalar tensor functions can be applied
instead of + and ∗
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Cyclops Tensor Framework Coupled Cluster with CTF

Quantum chemistry codes using CTF

Aquarius was developed by Devin Matthews in conjunction with CTF

Libtensor has been integrated with CTF by Evgeny Epifanovsky

Q-Chem can leverage Libtensor and integration with CTF is almost
complete
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Cyclops Tensor Framework Coupled Cluster with CTF

CCSD

Extracted from Aquarius (Devin Matthews’ code,
https://github.com/devinamatthews/aquarius)

FMI["mi"] += 0.5*WMNEF["mnef"]*T(2)["efin"];

WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T(2)["efij"];

FAE["ae"] -= 0.5*WMNEF["mnef"]*T(2)["afmn"];

WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T(2)["afin"];

Z(2)["abij"] = WMNEF["ijab"];

Z(2)["abij"] += FAE["af"]*T(2)["fbij"];

Z(2)["abij"] -= FMI["ni"]*T(2)["abnj"];

Z(2)["abij"] += 0.5*WABEF["abef"]*T(2)["efij"];

Z(2)["abij"] += 0.5*WMNIJ["mnij"]*T(2)["abmn"];

Z(2)["abij"] -= WAMEI["amei"]*T(2)["ebmj"];
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Cyclops Tensor Framework Coupled Cluster with CTF

CCSDT

Extracted from Aquarius (Devin Matthews’ code)

Z(1)["ai"] += 0.25*WMNEF["mnef"]*T(3)["aefimn"];

Z(2)["abij"] += 0.5*WAMEF["bmef"]*T(3)["aefijm"];

Z(2)["abij"] -= 0.5*WMNEJ["mnej"]*T(3)["abeinm"];

Z(2)["abij"] += FME["me"]*T(3)["abeijm"];

Z(3)["abcijk"] = WABEJ["bcek"]*T(2)["aeij"];

Z(3)["abcijk"] -= WAMIJ["bmjk"]*T(2)["acim"];

Z(3)["abcijk"] += FAE["ce"]*T(3)["abeijk"];

Z(3)["abcijk"] -= FMI["mk"]*T(3)["abcijm"];

Z(3)["abcijk"] += 0.5*WABEF["abef"]*T(3)["efcijk"];

Z(3)["abcijk"] += 0.5*WMNIJ["mnij"]*T(3)["abcmnk"];

Z(3)["abcijk"] -= WAMEI["amei"]*T(3)["ebcmjk"];
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Cyclops Tensor Framework Coupled Cluster with CTF

Tensor data input and output

write, read, or accumulate data bulk synchronously by global index
(coordinate format)

input or output data from/to well-defined distributions faster

extract contiguous tensor slices (to a subcommunicator if desired)

extract permuted tensor slices (e.g. arbitrary subsets of rows and
columns)
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Cyclops Tensor Framework Internal mechanism

Tensor decomposition and mapping

CTF tensor decomposition

cyclic layout used to preserve packed symmetric structure

overdecomposition employed to decouple the parallelization from the
physical processor grid

CTF mapping logic

arrange physical topology into all possible processor grids

for each contraction autotune over all topologies and mappings

select best mapping based on performance models (communication
cost, memory requirements, etc.)
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Cyclops Tensor Framework Internal mechanism

Symmetric matrix representation
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Cyclops Tensor Framework Internal mechanism

Blocked distributions of a symmetric matrix
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Cyclops Tensor Framework Internal mechanism

Cyclic distribution of a symmetric matrix
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Cyclops Tensor Framework Internal mechanism

Tensor contraction mapping visualization
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Cyclops Tensor Framework Internal mechanism

Algorithms and optimization for tensor redistribution

The following three redistribution kernels are provided by CTF

Sparse (key-value) redistribution (user input/output)

performs (threaded) binning of key-value pairs and sends the pairs

Dense mapping-to-mapping redistribution between arbitrary decompositions

performs (threaded) binning by implicit index and sends pure data

Block-to-block redistribution between similar distributions on different
processor grids

processors exchange blocks via point-to-point messages
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Cyclops Tensor Framework Performance

Comparison with NWChem

NWChem is a commonly-used distributed-memory quantum chemistry
method suite

provides CCSD and CCSDT

uses Global Arrays (GA) tensor partitioning and contraction

Tensor Contraction Engine (TCE) factorizes CC equations and
generated GA code
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Cyclops Tensor Framework Performance

Coupled-cluster code on BlueGene/Q (Mira)

CCSD up to 55 water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ
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Cyclops Tensor Framework Performance

Coupled-cluster code on Cray XC30 (Edison)

CCSD up to 50 water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ
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Symmetry Preserving Algorithm Instances in matrix computations

Symmetric-matrix–vector multiplication

Consider symmetric n × n matrix A and vectors b, c

c = A · b is usually done by computing a nonsymmetric intermediate
matrix W,

Wij = Aij · bj ci =
n∑

j=1

Wij

which requires n2 multiplications and n2 additions

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = Aij · (bi + bj) ci =
n∑

j=1

Zij −
( n∑

j=1

Aij

)
· bi

which requires n2

2 multiplications and 5n2

2 additions
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Symmetry Preserving Algorithm Instances in matrix computations

Symmetrized rank-two outer product

Consider vectors a,b of dimension n

Symmetric matrix C = a · bT + b · aT is usually done by computing a
nonsymmetric intermediate matrix W,

Wij = ai · bj Cij = Wij + Wji

which requires n2 multiplications and n2/2 additions

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = (ai + aj) · (bi + bj) Cij = Zij − ai · bi − aj · bj

which requires n2

2 multiplications and 2n2 additions
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Symmetry Preserving Algorithm Instances in matrix computations

Symmetrized matrix multiplication

Consider symmetric n × n matrices A, B, and C

C = A · B + B · A is usually computed via a nonsymmetric
intermediate order 3 tensor W,

Wijk = Aik · Bkj W̄ij =
∑
k

Wijk Cij = Wij + Wji .

which requires n3 multiplications and n3 additions.

The symmetry preserving algorithm employs a symmetric intermediate
tensor Z using n3/6 multiplications and 7n3/6 additions,

Zijk = (Aij + Aik + Ajk) · (Bij + Bik + Bjk) vi =
n∑

k=1

Aik · Bik

Cij =
n∑

k=1

Zijk−n · Aij · Bij−vi−vj−
( n∑

k=1

Aik

)
· Bij−Aij ·

( n∑
k=1

Bik

)
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Symmetry Preserving Algorithm General symmetric contractions

Symmetry preserving algorithm generalization

Any fully symmetrized contraction of two fully symmetric tensors with
a total of ω indices can be done with nω/ω! +O(nω−1) multiplications

Extensions to antisymmetric tensors and antisymmetrized
contractions possible, but not for all cases

Extends to all complex/Hermitian cases

Also applicable to contractions of a tensor with itself, in particular A2

for symmetric or antisymmetric matrix A requires n3/6 multiplications

Nonsymmetric A2 (or more generally A · B + B · A for nonsymmetric
matrices A, B) can be done in 2n3/3 operations

Numerical stability confirmed via proof and experiments

Communication cost lower and upper bounds derived
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Symmetry Preserving Algorithm Application to coupled-cluster

Application to CCSD

The CCSD contraction

Z ak̄
i c̄ =

∑
b

∑
j

T ab
ij · V j k̄

bc̄

usually requires 2n6 total operations.

The symmetry-preserving algorithm can be applied over the indices

Za =
∑
b

Tab · Vb

with each multiplication being a contraction over the other four indices
i ,j ,c̄,k̄, which is more expensive than the addition operations, yielding n6

operations to leading order.
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Symmetry Preserving Algorithm Application to coupled-cluster

Application to CCSD(T) and CCSDT(Q)

The CCSD(T) contraction

T abc̄
ij k̄

= P(a, b)P(i , j)
n∑

l̄=1

T ac̄
i l̄

·W l̄b
j k̄

usually requires 2n7 total operations.

The symmetry-preserving algorithm can be applied over the indices

Tab = P(a, b)Ta ·Wb and Tij = P(i , j)Ti · Tj

with each multiplication in the latter being a contraction over the
remaining three indices c̄ ,k̄ , and l̄ , for a total of n7/2 leading order
operations.
For a similar CCSDT(Q) contraction, which usually requires n9/2
operations, the symmetry preserving algorithm achieves n9/18.
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Conclusion

Conclusion

Future work on symmetry-preserving algorithms

full cost derivations for CC methods

communication cost analysis for partially-symmetric contractions

integration into CTF (the power of abstraction: one day you update
the CTF version and your CC code becomes faster)

Future work on CTF

iterative performance-model refinement via online learning

automatic multi-contraction scheduling

sparse tensors
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