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Introduction

Coupled Cluster as a hypergraph computation

Graphs describe the connectivity of a set of vertices

an edge in a graph is a pair of vertices
an edge in a hypergraph is a set of vertices

Coupled Cluster can be described in terms of a directed hypergraph
G = (V ,E )

the vertices V = O ∪ U contain electrons O and basis functions U
one-electron integrals can be represented as regular edges
two-electron integrals can be represented as hypergraph edges
vpq
rs ∈ (V × V × V × V )

the amplitudes may also be represented as hypergraph edges (or paths)
tabij ∈ (O × O × . . .)→ (U × U × . . .)
Coupled Cluster iteratively updates the hypergraph ’paths’ based on
previously known best values
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Introduction

Motivation

Hypergraphs are represented numerically as tensors

tensor symmetry is implicit from hypergraph edge definition

Coupled Cluster is represented numerically as tensor contractions

Tensor contractions are a mathematical encoding of dependencies

data and its structure is described as tensors

interaction among data is described as tensor contractions

general beyond Coupled Cluster (or even quantum chemistry)
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Distributed tensors as an abstraction Specification for a tensor contraction library

Basic specification for a tensor library

A tensor contraction library should provide

tensor objects that express structure

partial and full symmetry/anti-symmetry
sparsity

user-level contractions defined by indices rather than loops

data accessibility in multiple forms

full dense tensor
sparse index-value pairs
slice (subtensor)
subset of indices along each dimension
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Distributed tensors as an abstraction Specification for a tensor contraction library

Specification for a distributed tensor library

In a distributed-memory tensor contraction library,

tensor objects should live on a any set of processors (MPI comm)

tensor data should be partitioned among (mapped onto) the
processors internally

tensors should be able to migrate between mappings

the framework should select an algorithm and tensor mappings for
each contraction

it should be possible to schedule many contractions in parallel
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Distributed tensors as an abstraction Cyclops Tensor Framework

Mapping in Cyclops Tensor Framework (CTF)

Decompose tensor into blocks (virtual processors) and map blocks onto
processors

map a tensor with edge lengths (n1, n2, . . .) tensor to a (p1, p2, . . .)
via a (v1, v2, . . .) virtual topology, such that

vi = 0 mod pi for (enforce load balance)
vi = vj if tensor dimensions i and j are symmetric (preserve symmetry)
typically want to maximize block size,

∏
i ni/vi

for each contraction, enforce new rules on mapping

if two tensors share an index, mapped onto vi in the first and onto vj in
the second, vi = vj
etc...
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Distributed tensors as an abstraction Cyclops Tensor Framework

The mapping process

Do in parallel over all physical topologies (foldings of the original torus)

1 map longest physical torus dimension to longest tensor dimension and
repeat

2 select virtualization factors to preserve symmetry (as well as to match
the algorithmic requirements)

3 calculate the necessary memory usage and communication cost of the
algorithm

4 consider whether and what type of redistribution is necessary for the
mapping

5 select the best mapping based on a performance model
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Distributed tensors as an abstraction Cyclops Tensor Framework

3D tensor mapping
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Distributed tensors as an abstraction Cyclops Tensor Framework

Redistribution in CTF

CTF provides three types of redistributions

sparse index-value redistribution

general but slow
easily accessible to user

mapping-to-mapping redistribution

allows a tensor to migrate from an ordered mapping to another
does not form indices explicitly (exploits global order)
∼10X faster than sparse redistribution

block-to-block redistribution

possible if the virtual decomposition (blocking) does not change
useful for reassigning physical dimensions
∼10X faster than general mapping-to-mapping redistribution
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Distributed tensors as an abstraction Cyclops Tensor Framework

Local transposition

Once the data is redistributed into the new mapping, we reorder it locally
within blocks

turns all non-symmetric block contractions into matrix multiplication

’preserved’ symmetries may be folded into one dimension, but broken
ones cannot

maps dimensions which have symmetry that cannot be folded into
matrix multiplication to have the longest stride

the contraction execution logic becomes

1 nested SUMMA (distributed matrix multiplication)
2 nested call to iterate over virtual blocks
3 nested call to iterate over broken symmetric dimensions
4 nested call to DGEMM (matrix multiplication)
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Distributed tensors as an abstraction Cyclops Tensor Framework

Comparison with NWChem on Cray XE6

CCSD iteration time on 64 nodes of Hopper:

system # electrons # orbitals CTF NWChem

w5 25 205 14 sec 36 sec

w7 35 287 90 sec 178 sec

w9 45 369 127 sec -

w12 60 492 336 sec -

On 128 nodes, NWChem completed w9 in 223 sec, CTF in 73 sec.
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Distributed tensors as an abstraction Cyclops Tensor Framework

Blue Gene/Q CTF/Aquarius CCSD up to 1250 orbitals,
250 electrons
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Distributed tensors as an abstraction Cyclops Tensor Framework

Coupled Cluster efficiency on Blue Gene/Q
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CCSDT effort

Problems posed by CCSDT

Tensor symmetry

T3 amplitude tensors are symmetric up to 36 index permutations

packing/unpacking requires many transpositions

performing each permutation requires many contractions

Lots of contractions

many contractions involve small tensors

even the large contractions involve at least one ’smaller’ tensor
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CCSDT effort

CTF renovations for CCSDT

Much optimization to transposition kernels has been done

new optimizations for mapping-to-mapping redistribution kernel
(thanks to Devin)

block-to-block redistribution introduced

transpose and redistribution threaded with consideration for
symmetric structure

Unpacking, repacking, and replication cause memory fragmentation

cannot let tensors run free in the wild

assign ’home’ buffer (initial mapping) and migrate data back to it

use internal stack for efficient large memory allocation management
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CCSDT effort

Preliminary CCSDT results

Largest CTF/Aquarius CCSDT run so far

8 water molecules (40 electrons), cc-pVDZ basis set (192 atomic
orbitals)

done on 2048 nodes of BG/Q (128K cores)

15 mins per CCSDT iteration, ∼30 Teraflops, 23% time in dgemm

Preliminary comparison with NWChem for CCSDT on 32 nodes Hopper
(iteration time)

3-waters, cc-pVDZ: CTF 100 sec, NWChem 160 sec

4-waters, cc-pVDZ: CTF 382 sec, NWChem 750 sec
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CCSDT effort

Is CTF optimal?

good question...

no!

why?
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CCSDT effort

Symmetric tensor contractions via fully symmetric
intermediates

Let b be a vector of length n with elements

Let A be a n-by-n symmetric matrix with elements

Aij = Aji

Typically, we say the symmetry of A is broken and compute

ci =
n∑

j=1

Aijbj (1)

Instead we can use half the number of multiplications

ci =
n∑

j=1

Aij · (bi + bj)−

 n∑
j=1

Aij

 bi

A similar reorganization is possible for the symmetrized outer product
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CCSDT effort

General fast symmetric tensor contractions

Given fully symmetric A, B, and C, compute

Ci1...is+t =
∑

((j1...js),(l1...lt))∈χs(i1...is+t)

∑
k1...kv

Ak1...kv
j1...js

· B l1...lt
k1...kv

 .

Typically computed by (implicitly) forming partially-symmetric C̄

C̄ l1...lt
j1...js

=
∑
k1...kv

Ak1...kv
j1...js

· B l1...lt
k1...kv

.

Cost is ns+t+v

s!t!v ! , via fully symmetric intermediates it becomes,(
n

s + t + v

)
≈ ns+t+v

(s + t + v)!

20 / 23 Edgar Solomonik Cyclops Tensor Framework 20/ 23



Future work

Summary

Cyclops Tensor Framework (CTF)

ctf.cs.berkeley.edu, BSD license, try it, use it

stand-alone library requiring only MPI+OpenMP+BLAS

Tested on gcc/intel/xlc, Mira/Carver/Hopper/Edison/Apple

High performance algebra for multidimensional symmetric arrays

In its essence, CTF is a library for mapping and communication
orchestration of data via mathematical user-level language (operators)

Its not optimal, because there are faster algorithms for symmetric
contractions (but the software abstractions are still correct!)
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Future work

Future and ongoing work

Cyclops Tensor Framework

scheduling and concurrent execution of contractions

better internal performance models

exposure of a mapping interface to the user

sparse tensors

software realization of fast symmetric tensor contraction algorithms
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Future work
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