Scaling Betweenness Centrality using Communication-Efficient Sparse Matrix Multiplication

Edgar Solomonik^{1,2}, Maciej Besta¹, Flavio Vella¹, and Torsten Hoefler¹

¹ Department of Computer Science ETH Zurich

²Department of Computer Science University of Illinois at Urbana-Champaign

November 2017

E. Solomonik, M. Besta, F. Vella, T. Hoefler

Communication-Efficient Betweenness Centrality

Outline

- Betweenness Centrality
 - Problem Definition
 - All-Pairs Shortest-Paths
 - Brandes' Algorithm
 - Parallel Brandes' Algorithm
- Sparse Matrix Multiplication
 - Algebraic Shortest Path Computation
 - Parallel Sparse Matrix Multiplication
- Algebraic Parallel Programming
 - Cyclops Tensor Framework
 - Performance Results

Conclusion

Centrality in Graphs

Betweenness centrality – For each vertex v in G = (V, E), sum the fractions of shortest paths $s \sim t$ that pass through v,

$$\lambda(v) = \sum_{s,t \in V} \sigma_v(s,t) / \sigma(s,t).$$

- $\sigma(s,t)$ is the number (multiplicity) of shortest paths $s \sim t$
- $\sigma_v(s,t)$ is the number of shortest paths $s \sim t$ that pass through v
- Shortest paths can be unweighted or weighted
- Centrality is important in analysis of biology, transport, and social network graphs

Path Multiplicities

- Let d(s,t) be the shortest distance between vertex s and vertex t
- The multiplicity of shortest paths $\sigma(s,t)$ is the number of distinct paths $s \sim t$ with distance d(s,t)
- If v is in some shortest path $s \sim t$, then

$$d(s,t) = d(s,v) + d(v,t)$$

• Consequently, can compute all $\sigma_v(s,t)$ and $\lambda(v)$ given all distances

$$\sigma_v(s,t) = \begin{cases} \sigma(s,v)\sigma(v,t) & : d(s,t) = d(s,v) + d(v,t) \\ 0 & : \text{ otherwise} \end{cases}$$

Betweenness Centrality by All-Pairs Shortest-Paths

- We can obtain d(s,t) for all s,t by all-pairs shortest-paths (APSP)
- Multiplicities (σ and σ_v for each v) are easy to get given distances
- However, the cost of APSP is prohibitive, for *n*-node graphs:
 - $Q = \Theta(n^3)$ work with typical algorithms (e.g. Floyd-Warshall)
 - $D = \Theta(\log(n)) \operatorname{depth}^1$
 - $M = \Theta(n^2/p)$ memory footprint per processor
- APSP does not effectively exploit graph sparsity

E. Solomonik, M. Besta, F. Vella, T. Hoefler

¹Tiskin, Alexander. "All-pairs shortest paths computation in the BSP model." Automata, Languages and Programming (2001): 178-189.

Brandes' Algorithm for Betweenness Centrality

Ulrik Brandes proposed a memory-efficient method¹

- Compute $d(s,\star)$ and $\sigma(s,\star)$ for a given source vertex s
- Using these calculate partial centrality factors $\zeta(s,v)$ so

$$\zeta(s,v) = \sum_{t \in V, \ d(s,v) + d(v,t) = d(s,t)} \sigma(v,t) / \sigma(s,t)$$

Construct the centrality scores from partial centrality factors

$$\lambda(v) = \sum_s \sigma(s, v) \zeta(s, v)$$

¹Brandes, Ulrik. "A faster algorithm for betweenness centrality." Journal of mathematical sociology 25.2 (2001): 163-177.

E. Solomonik, M. Besta, F. Vella, T. Hoefler

Shortest Path Tree (DAG)

If any multiplicity $\sigma(s,t) > 1$, shortest path tree has cross edges, so we have a **directed acyclic graph (DAG) of shortest paths**

Shortest Path Tree Multiplicities

shortest path multiplicites

 $\sigma(s, v)$ value displayed for each node v given colored source vertex s

Partial Centrality Factors in Shortest Path Tree

betweenness centrality back-propagation

If $\pi(s, v)$ are the children of v in shortest path tree from s

$$\zeta(s,v) = \sum_{c \in \pi(s,v)} \left(\frac{1}{\sigma(s,c)} + \zeta(s,c) \right)$$

Brandes' Algorithm Overview

- For each source vertex $s \in V$ (or a **batch** of source vertices)
- Compute single-source shortest-paths (SSSP) from s
 - For unweighted graphs, use breadth first search (BFS)
 - More viable choices for weighted graphs: Dijkstra, Bellman-Ford, $\Delta\text{-stepping,}\ldots$
- Perform back-propagation of centrality scores on shortest path tree from s
 - Roughly as hard as BFS regardless of whether G is weighted

Parallelism in Brandes' Algorithm

Sources of parallelism in Brandes' algorithm:

- Computation of SSSP and back-propagation
 - Concurrency and efficiency like BFS on graphs
 - Bellman-Ford provides maximal concurrency for weighted graphs at cost of extra work
- Different source vertices can be processed in parallel as a batch
 - Key additional source of concurrency
 - Maintaining more distances requires greater memory footprint, $M = \Omega(bn/p)$ for batch size b

Algebraic shortest path computations

Tropical (geodetic) semiring

- additive operator: $a \oplus b = \min(a, b)$, identity: ∞
- multiplicative operator: $a \otimes b = a + b$, identity: 0
- semiring matrix multiplication:

$$C = A \otimes B \quad \Rightarrow \quad c_{ij} = \min_k (a_{ik} + b_{kj})$$

Bellman-Ford algorithm (SSSP) for $n \times n$ adjacency matrix A:

1 initialize
$$oldsymbol{v}^{(1)}=(0,\infty,\infty,\ldots)$$

② compute $oldsymbol{v}^{(n)}$ via recurrence

$$oldsymbol{v}^{(i+1)} = oldsymbol{v}^{(i)} \oplus (oldsymbol{A} \otimes oldsymbol{v}^{(i)})$$

Algebraic View of Brandes' Algorithm

ullet Given frontier vector ${m x}^{(i)}$ and tentative distances ${m w}^{(i)}$

$$oldsymbol{y}^{(i)} = oldsymbol{A} \otimes oldsymbol{x}^{(i)}$$
 and $oldsymbol{w}^{(i+1)} = oldsymbol{w}^{(i)} \oplus oldsymbol{y}^{(i)}$

- $oldsymbol{x}^{(i+1)}$ given by entries if $oldsymbol{w}^{(i+1)}$ that differ from $oldsymbol{w}^{(i)}$
- For BFS, tentative distances change only once
- For Bellman-Ford, tentative distances can change multiple times
 - At maximum as many times as the depth of the shortest path DAG
- Thus both algorithms require iterative SpMSpV
- Having a batch size b > 1 transforms the problem to sparse matrix multiplication (SpGEMM or SpMSpM)

Communication Avoiding Sparse Matrix Multiplication

- Let the bandwidth cost *W* be the maximum amount of data communicated by any processor
- We use analogue of 1D/2D/3D rectangular matrix multiplication
- ullet The bandwidth cost of matrix multiplication ${m Y}={m A}{m X}$ is then

$$W = \min_{p_1 p_2 p_3 = p} \left[\frac{\operatorname{nnz}(\boldsymbol{A})}{p_1 p_2} + \frac{\operatorname{nnz}(\boldsymbol{X})}{p_2 p_3} + \frac{\operatorname{nnz}(\boldsymbol{Y})}{p_1 p_3} \right] \right)$$

• In our context, nnz(A) = |E| = m, while X holds current frontiers for b starting vertices, so $nnz(X) \le nb$

Communication Avoiding Betweenness Centrality

- Latency cost is proportional to number of SpMSpM calls
- Replication of ${f A}$ for SpMSpMs minimizes bandwidth cost W
- It then suffices to communicate frontiers X and reduce results Y
- For undirected graphs, for b starting vertices, total nonzeros in X over all iterations is nb and for Y is O(nb)
- Best choice of b with sufficient memory gives

$$W = O(n\sqrt{m}/p^{2/3})$$

- Memory-constrained communication cost bound given in paper
 - Perfect theoretical strong scaling in communication cost

from p_0 to $\Theta(p_0^{3/2}n^2/m)$ processors

Cyclops Tensor Framework (CTF)¹

- Distributed-memory symmetric/sparse tensors in C++ or Python
- For betweenness centrality, we only use CTF matrices
 Matrix<int> A(n, n, AS|SP, World(MPI_COMM_WORLD));
 A.read(...); A.write(...); A.slice(...); A.permute(...);
- Matrix summation in CTF notation is

B["ij"] += A["ij"];

Matrix multiplication in CTF notation is

Y["ij"] += T["ik"]*X["kj"];

Used-defined elementwise functions can be used with either

Y["ij"] += Function<>([](double x){ return 1/x; })(X["ij"]); Y["ij"] += Function<int,double,double>(...)(A["ik"],X["kj"]);

¹E. Solomonik, D. Matthews, J. Hammond, J. Demmel, JPDC 2014

CTF Code for Betweenness Centrality

```
void btwn_central(Matrix<int> A, Matrix<path> P, int n){
  Monoid < path > mon(...,
                    [](path a, path b){
                      if (a.w<b.w) return a;
                      else if (b.w<a.w) return b;
                      else return path(a.w, a.m+b.m);
                    \}, \ldots);
  Matrix<path> Q(n,k,mon); // shortest path matrix
  Q["ij"] = P["ij"];
  Function<int,path> append([](int w, path p){
                        return path(w+p.w, p.m);
                      }; );
  for (int i=0; i<n; i++)</pre>
    Q["ij"] = append(A["ik"],Q["kj"]);
  . . .
}
```

Symmetry and Sparsity by Cyclicity

A cyclic layout provides

- preservation of packed symmetric storage format
- load balance for sparse 1D/2D (vertex/edge) graph blocking
- obliviousness with respect to graph structure/topology

Data Mapping and Autotuning

The CTF workflow is as follows

- All operations executed bulk synchronously
- For each product, matrices can be redistributed globally
- Arbitrary sparsity supported via compressed-sparse-row (CSR)
 - Modularity permits alternative sparse matrix representations
- Performance model used to select best contraction algorithm
 - Leverages randomized distribution of nonzeros (edges)
 - Model coefficients tuned using linear regression
- Layout and algorithm choices are made at runtime using model

CTF Performance for Betweenness Centrality

- Implementation uses CTF SpGEMM adaptively with sparse or dense output (push or pull)
- We compare with CombBLAS, which uses semirings and BFS (unweighted only)

Friendster has 66 million vertices and 1.8 billion edges (results on Blue Waters, Cray XE6)

Conclusions and Future Work

- Summary of algorithmic contributions
 - Parallel communication-avoiding betweenness centrality algorithm
 - Better sparse matrix multiplication for unbalanced nonzero counts
 - Algorithms and implementation general to weighted graphs
- Future work
 - Use of $\Delta\text{-stepping}$ or other more work-efficient SSSP algorithms
 - Optimizations in conjunction with approximation algorithms

Cyclops Tensor Framework

- Graphs are one of many applications, other highlights include
 - Petascale high-accuracy quantum chemistry
 - 56-qubit (largest ever) quantum computing simulation
- Already provides most functionality proposed in GraphBLAS 1, plus all of that for tensors (hypergraphs with uniform size nets)