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Tensor contractions
For some s, t, v > 0, a tensor contraction of tensors A and B is

_ ; ; i i pk
Cy= Z: A - By alternatively written, Ci = Z: Ay B
R K

where i = {i,....is},j = {j1.-...ji}, and k = {kq, ..., k,}.

Matrix/vector examples:
@ (s,t,v)=(0,0,1) vector inner product

@ (s,t,v) =(1,0,1) matrix-vector multiplication
@ (s,t,v)=(1,1,0) vector outer product
@ (s,t,v) =(1,1,1) matrix-matrix multiplication
@ (s, t,v)=(s, 1, 1) tensor-times-matrix
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Applications of higher-order tensor contractions

Some applications of contractions of tensors of order at least three:
@ tensor factorization algorithms, e.g. alternating least squares
@ deep learning convolutional neural networks
@ higher-order analysis of probabilistic correlation
@ post-Hartree-Fock electronic structure, e.g. coupled cluster
@ density matrix renormalization group (DMRG)
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Contractions in Coupled Cluster (CCSD method)
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Exploiting symmetry in tensor contractions

Tensor symmetry (e.g. A;j = A;) reduces memory and cost
@ for order d tensor, d! less memory
@ dot product }; ; AjB; =23, AjBj + 3 AiBi
@ matrix-vector multiplication (A; = Aj)

c,:ZA,-jbj ZA,,b+b (ZA,,)
j

° parhally symmetrlc case: Ta ijb

W= S ST
—z(zTab PVve) - X (ST v

b i

o Zgk =y, T(Vik + V) = —Zgk — 2x fewer operations
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Symmetry preserving algorithms
By exploiting symmetry, reduce multiplies (but increase adds)
@ rank-2 vector outer product
C,'j = a,-bj + a,-b,- = (a,- + aj)(b,- + bj) — aib; — ajbj

@ squaring a symmetric matrix A (or AB + BA)

Ci=> AxAy = Y (Ak+Ag+A)° -
P P

@ fully symmetric contraction of order s + v and v + t tensors

(s+t+v)!

STV fewer multiplies

e€.g. cases above are
e (s,t,v)=(1,1,0) — reduction by 2X
e (s,t,v)=(1,1,1) — reduction by 6X
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Applications of symmetry preserving algorithms

Extensions and applications:
@ numerically stable by forward error bounds and experiments

@ for Hermitian tensors, multiplies cost 3X more than adds

e Hermitian matrix multiplication and tridiagonal reduction (BLAS and
LAPACK routines) with 25% fewer operations

@ cost reductions in partially-symmetric coupled cluster contractions:
2X-9X for select contractions, 1.3X, 2.1X for CCSD, CCSDT

@ (2/3)n® multiplies for squaring a nonsymmetric matrix
1 1
Xsy = E(XJFXT), Xas = 5 (X — X",

C=AB+ (ATB") = AB+ BA
= (AsyBsy)sy + (AsyBas)as + (AasBsy)as + (AasBas)sy

four invocations of (s, t,v) = (1,1,1), squaring when A= B
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Symmetry preserving blocking (sketch)

Multiplication of a symmetric matrix A and a nonsymmetric matrix B:
@ classical approach, two choices:

@ treat A as nonsymmetric (unpack if stored as symmetric)
@ multiply by lower-triangle of A then by its transpose

@ proposed new approach
e fold n x nmatrix Ainto \/p x - p x 5 tensor T
e note that 7)) = T/, define part|ally symmetnc Y) =T} + T} and
partially-antisymmetric S}, = T, — T/
@ use symmetry preserving alg. over indices of dims \F f, results
in p subproblems with symmetric matrices with dims f f
@ food for thought: keep folding/symmetrizingto 2 x --- x 2 tensors
— Hankel matrices (modulo sign interchanges)
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Bilinear algorithms

Bilinear algorithms' for symmetric contractions
@ a bilinear algorithm is defined by matrices F(A), F(B) F(C)
where o is the Hadamard (pointwise) product

% e

@ the number of rows in each matrix corresponds to the number of
inputs (dimensions of a and b) and outputs (dimension of ¢)

e for clasiscal n x n matrix multiplication F(A), F(B) F(©) are n? x nd
and have one unit entry per column

c=FOFATg) o (FBTp)

@ number of columns in FA) F(B) F(C) is the bilinear algorithm rank

1 Pan, How to Multiply Matrices Faster, Springer, 1984
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Bilinear algorithms as tensor factorizations

A bilinear algorithm corresponds to a CP tensor decomposition

A0 (3A0) (A7)
z(iF<C>FA>F:>) o

r=1

H
i M:u

Il
- -1

Z Tikajbx where Ty = ZF(C)F F(F)
K

For multiplication of n x n matrices,

@ Tism xmxrP

@ classical algorithm has rank R = n®

@ Strassen’s algorithm has rank R ~ n'°%(7)
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Bilinear algorithms as tensor factorizations

A bilinear algorithm corresponds to a CP tensor decomposition

A0 (3A0) (A7)
z(iF<C>FA>F:>) o

r=1

H
i M:u

Il
- -1

Z Tikajbx where Ty = ZF(C)F F(F)
K

For symmetric tensor contractions (not counting diagonals)

e Tis (7, x (s4y) x (1)

e classical algorithm has rank R = (2) (7) (])

e symmetry preserving — R~ (4,7, ), thatis FEEY)" less
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Expansion in bilinear algorithms

Given A = (FA, F(B) F(C)) Ay, C A if 3 projection matrix P, so
Ao = (FAP FB P FC)p)

the projection matrix extracts #cols(P) columns of each matrix.

A bilinear algorithm A has expansion bound &, : N® — N, if for all
Aab = (Fl Fl - Fl) € A

we have
rank(Asu) < En (rank(FS(:t‘))), rank(Fs(ui)), rank(Fs(u,CJ)))

For matrix mult., Loomis-Whitney inequality — Eum(x, y, 2) = /XyZ

. St+it+v St+it+v St+itv
For sym. pres. Eé“;’t’v)(x,y, z) = O(mln (x5, y v,z s ))
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Communication in symmetry preserving algorithms

Communication lower bounds based on bilinear algorithm expansion
@ horizontal comm. — max data sent or received
@ vertical comm. — max data moved between memory and cache

For contraction of order s + v tensor with order v + t tensor
@ matrix-vector-like algorithms (min(s, t, v) = 0)
e vertical communication dominated by largest tensor

@ horizontal communication asymptotically greater if only unique
elements are storedand s # t # v

@ matrix-matrix-like algorithms (min(s, t,v) > 0)
e vertical and horizontal communication costs asymptotically greater
for symmetry preserving algorithm when s # t # v
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Conclusion
Summary:
@ symmetry preserving algorithms reduce cost of contractions

@ they have been tested using Cyclops Tensor Framework
https://github.com/solomonik/ctf

@ rank structure of bilinear algorithms yields communication bounds
Future work:

@ communication lower bounds for partially-symmetric cases

@ high performance implementation

Related work: J. Noga and P. Valiron, Improved algorithm for triple-excitation contributions
within the coupled cluster approach, Molecular Physics, 103 (2005).
References (for more, email solomonik@inf.ethz.ch):

@ E.S. and J. Demmel; Contracting symmetric tensors using fewer multiplications; ETH
Zurich, 2015

@ E.S., J Demmel, and T. Hoefler; Communication lower bounds for tensor contraction
algorithms; ETH Zurich, 2015
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https://github.com/solomonik/ctf

Backup slides
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Stability of symmetry preserving algorithms

Relative error of c=A*b with positive A and alternating b Relative error of squaring a Householder transformation
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Symmetry preserving algorithm vs Strassen’s
algorithm

5 Symmetry preserving alg. vs Strassen’s alg. (s=t=v=w/3)
©
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A library for tensor computations

Cyclops Tensor Framework
@ implicit for loops based on index notation (Einstein summation)

@ matrix sums, multiplication, Hadamard product (tensor
contractions)

@ distributed symmetric-packed/sparse storage via cyclic layout
Jacobi iteration (solves Ax = b iteratively) example code snippet

Vector<> Jacobi(Matrix<> A, Vector<> b, int n){
// split A = R + diag(1./d)

do {
X[" "] = d["i"]*(b[" "] R["ij"]*x["‘"]);
r["i"] = bL"i"1-AL"ij"1*x["j"1; // compute residual

} while (r.norm2() > 1.E-6); // check for convergence
return x;
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Coupled cluster using CTF

Extracted from Aquarius (Devin Matthews’ code,
https://github.com/devinamatthews/aquarius)

FMI["mi"] += Q.5*WMNEF["mnef”]1*xT2["efin"];
WMNIJL["mnij"] += @.5*WMNEF["mnef"]1*T2["efij"]1;
FAE["ae"] -= @.5*WMNEF["mnef"]*T2["afmn"];
WAMEI["amei"] -= @.5*WMNEF["mnef”]1*T2["afin"];

z2["abij”]1 = WMNEF["ijab"1;

Z2["abij"] += FAE["af"1xT2["fbij"1;
z2["abij”] -= FMI["ni”1xT2["abnj"1;
72["abij"] += @.5xWABEF["abef"1xT2["efij"1;
Z2["abij"] += @.5%*WMNIJ["mnij"1xT2["abmn"];
Z2["abij”]1 -= WAMEI["amei”]*T2["ebmj"1;

CTF is used within Aquarius, QChem, VASP, and Psi4
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Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum
chemistry method suite

@ provides Coupled Cluster methods: CCSD and CCSDT
@ derives equations via Tensor Contraction Engine (TCE)
@ generates contractions as blocked loops leveraging Global Arrays

Strong scaling CCSDT on Edison
Strong scaling CCSD on Edison
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Coupled cluster on IBM BlueGene/Q and Cray XC30
CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ2

Weak scaling on BlueGene/Q Weak scaling on BlueGene/Q
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aS., Matthews, Hammond, Demmel, JPDC, 2014
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Coupled cluster methods

Coupled cluster provides a systematically improvable approximation to
the manybody time-independent Schrédinger equation H|V) = E|V)
@ the Hamiltonian has one- and two- electron components
H=F+V
@ Hartree-Fock (SCF) computes mean-field Hamiltonian: F, V
@ Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) consider
transitions of (doubles, triples, and quadruples) of electrons to
unoccupied orbitals, encoded by tensor operator,
T=Ti+To+T3+ T4
@ they use an exponential ansatz for the wavefunction, ¥ = e’ ¢
where ¢ is a Slater determinant
@ expanding 0 = (¢/|H|WV) yields nonlinear equations for {T;} in F, V

0=V?+ P(ab) ZTaer——P i)Y TERVINTE +
mnef

where P is an antisymmetrization operator
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Vertical communication in bilinear algorithms

Any schedule on a sequential machine with a cache of size H for
A = (FA), F(B) F(C)) with expansion bound &, has vertical
communication cost,

2rank(A)

Qp > max gmaX(H)H, #rows(FA)) + #rows(FB)) + #rows(F(©))
A

where EA(H) = max En(c?, cB) (0
¢,¢(8) c(C)eN, c(A) +¢(B) +¢(0) =3H
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Vertical communication in matrix multiplication

For the classical (non-Strassen-like) matrix multiplication algorithm of
m-by-k matrix A with k-by-n matrix B into m-by-n matrix C,

EMM(C(A)7 C(B), C(C)) — (C(A)C(B)C(C))1/2
further, we have

gmaX(H) — max ( (A)C(B) C))1/2 H3/2
c(A) ,¢(B) c(C)eN,c(A) +¢(B)4+-c(C) <3H

so0 we obtain the expected bound,

, #rows(FA) + #rows(FB)) + #rows(F(©)

Qv > max [2rank(MM)H

(c/‘rnax ( H)

k
,mKk + kn+ mn

ax [Zmn
VH
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Horizontal communication in bilinear algorithms

Any load balanced schedule on a parallel machine with p processes of
A = (FA, F(B) F(C)) with expansion bound & has horizontal
communication cost,

Wy > ¢ 4 ¢B) 4 ¢(©)

for some (communicated amounts) ¢®, ¢(8), ¢(©) ¢ N such that,

rank(A)/p < Ex(¢™ + #rows(FA) /p,
c(B 4 #rows(F(B))/p,
cl© + gtrows(F(©))/p)
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Horizontal communication in matrix multiplication

For the classical (non-Strassen-like) matrix multiplication algorithm of

m-by-k matrix A with k-by-n matrix B into m-by-n matrix C on a
parallel machine of p processors,

Waim = Q (Wo(min(m, n, k), median(m, n, k), max(m, n, k), p))
where 2/8
(%) o> yz/x?
x<£> cyz/x>>p>zly
1zly>p

Wo(x,y,z,p) =
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Communication lower bounds for direct evaluation of
symmetric contractions

An expansion bound on W(StY) is

g‘(us,t,v)(c(A)j c®. ¢9) = g (C(A)C(B)C(C)>1/27

where g = |:(S+V) (V—H) (S-H)

S v S

]1/2

Therefore, the same (asymptotically) horizontal and vertical
communication lower bounds apply for W($:tY) as for a matrix
multiplication with dimensions n® x n' x n".
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Communication lower bounds for direct evaluation of
symmetric contractions

Another expansion bound on W(s:10) (when v = 0) is

£(540) () ((B) ((0)y — ((2) _1 ) (©) 4 min ((C(A))w/s, (Bt c(C>)

There are also symmetric bounds when s =0 or t = 0.
When exactly one of s, t, v is zero, any load balanced schedule of
W(s:tv) on a parallel machine with p processors has horizontal

communication cost,
Wy = Q ((nw/p)max(s,t,v)/w>
This can be greater than the corresponding nonsymmetric bound,
We =2 ((/p)'72)
Fast Algorithms for Symmetric Tensor Contractions



Communication lower bounds for the symmetry
preserving algorithm

An expansion bound on ®(S$4Y) s

gés,t,v)(C(A)’ ¢(®), ¢(©)) = min ( <<°;> cA

This yields communication bounds with x := max(s+ v,v +t,s + t),
_ wH ~fa((n/p)/) 8, t,v>0
Qo =Q <Hw/n +n > We = {Q ((nw/p)max(s,t,v)/w) k=W
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Nesting of bilinear algorithms

Given two bilinear algorithms:

M :(F1(A)7 F1(B)a F1(C))
e =<, F®, 1)

We can nest them by computing their tensor product

M eh =(F o Y FB) o FB) FO g FO))
rank(Ay @ A2) =rank(Ay) - rank(Az)
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Communication lower bounds for nested algorithms

Conijecture: if bilinear algorithms A\ and Ao have expansion bounds &4
and &, then \y ® \p has expansion bound, £2(c®), c(B), ¢(€))

A B C A B C
= o Jmax 51(01( ),cﬁ ),c1( ))Ez(Cé ),cé ),cé )
cg ),01( ),05 ),cé ),cé ),cé )eN

CsA) CéA):C(A) 7053) CéB):C(B) 101(0) Céc):C(C)

Simplified conjecture: consider matrices A and B, such that for some
a,f€[0,1]andany k e N

@ any subset of k columns of A has rank at least kK~
@ any subset of k columns of B has rank at least k”
then any subset of k € N columns of A® B has rank at least k™n(e:5)

The first conjecture would provide lower bounds for the nested

algorithms we wish to use for partially-symmetric coupled-cluster
contractions.
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