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Terminology
A tensor T ∈ Rn1×···×nd has

order d (i.e. d modes / indices)
dimensions n1-by-· · · -by-nd (in this talk, usually each ni = n)
elements T i1...id = T i where i ∈ {1, . . . , n}d

We say a tensor is symmetric if for any j , k ∈ {1, . . . , n}

T i1...i j ...ik ...id = T i1...ik ...i j ...id

A tensor is antisymmetric (skew-symmetric) if for any j , k ∈ {1, . . . , n}

T i1...i j ...ik ...id = (−1)T i1...ik ...i j ...id

A tensor is partially-symmetric if such index interchanges are restricted to
be within subsets of {1, . . . , n}, e.g.

T ij
kl = T ji

kl = T ji
lk = T ij

lk

3 / 28 Fast symmetric tensor contractions



Tensor contractions
We work with contractions of tensors

A of order s + v , and
B of order v + t into
C of order s + t, defined as

C i j =
∑

k∈{1,...,n}v

AikBkj

requires O(ns+t+v ) multiplications and additions, ω := s + t + v
assumes an index ordering, but does not lose generality
works with any symmetries of A and B
is extensible to symmetries of C via symmetrization (sum all
permutations of modes in C , denoted [C ]i j )
generalizes simple matrix operations, e.g.

(s, t, v) = (1, 0, 1)︸ ︷︷ ︸
matrix-vector product

, (s, t, v) = (1, 1, 0)︸ ︷︷ ︸
vector outer product

, (s, t, v) = (1, 1, 1)︸ ︷︷ ︸
matrix-matrix product
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Applications of symmetric tensor contractions

Symmetric and Hermitian matrix operations are part of the BLAS
matrix-vector products: symv (symm), hemv, (hemm)
symmetrized outer product: syr2 (syr2k), her2, (her2k)
these operations dominate symmetric/Hermitian diagonalization

Hankel matrices are order 2 log2(n) partially-symmetric tensors

H =

[
H11 HT

21
H21 H22

]

where H11,H21,H22 are also Hankel.

In general, partially-symmetric tensors are nested symmetric tensors
a nonsymmetric matrix is a vector of vectors
T ij

kl = T ji
kl = T ji

lk = T ij
lk is a symmetric matrix of symmetric matrices
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Applications of partially-symmetric tensor contractions
High-accuracy methods in computational quantum chemistry

solve the multi-electron Schrödinger equation H|Ψ〉 = E |Ψ〉, where
H is a linear operator, but Ψ is a function of all electrons
use wavefunction ansatze like Ψ ≈ Ψ(k) = eT (k) |Ψ(k−1)〉 where Ψ(0)

is a mean-field (averaged) function and T (k) is an order 2k tensor,
acting as a multilinear excitation operator on the electrons
coupled-cluster methods use the above ansatze for k ∈ {2, 3, 4}
(CCSD, CCSDT, CCSDTQ)
solve iteratively for T (k), where each iteration has cost O(n2k+2),
dominated by contractions of partially antisymmetric tensors
for example, a dominant contraction in CCSD (k = 2) is

Zak̄
i c̄ =

n∑
b=1

n∑
j=1

T ab
ij · V

j k̄
bc̄

where T ab
ij = −T ba

ij = T ba
ji = −T ab

ji . We’ll show an algorithm that
requires n6 rather than 2n6 operations.
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Fast algorithms
Strassen’s algorithm[

C11 C12
C21 C22

]
=

[
A11 A12
A21 A22

]
·
[
B11 B12
B21 B22

]
M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 −M5 + M7

C21 = M2 + M4

C12 = M3 + M5

C22 = M1 −M2 + M3 + M6

By minimizing number of products, minimize number of recursive calls

T (n) = 7T (n/2) + O(n2) = O(7log2 n) = O(nlog2 7)

For convolution, DFT matrix reduces from naive O(n2) products to O(n),
both of these are bilinear algorithms
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How can we formally define an algorithm?

Formally defining a space of algorithms enables systematic exploration.

Definition (Bilinear algorithms (V. Pan, 1984))
A bilinear algorithm Λ = (F (A),F (B),F (C)) computes

c = F (C)[(F (A)Ta) ◦ (F (B)Tb)],

where a and b are inputs and ◦ is the Hadamard (pointwise) product.
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Bilinear algorithms as tensor factorizations

A bilinear algorithm corresponds to a CP tensor decomposition

c i =
R∑

r=1
F (C)

ir

(∑
j

F (A)
jr aj

)(∑
k

F (B)
kr bk

)

=
∑

j

∑
k

( R∑
r=1

F (C)
ir F (A)

jr F (B)
kr

)
ajbk

=
∑

j

∑
k

T ijkajbk where T ijk =
R∑

r=1
F (C)

ir F (A)
jr F (B)

kr

For multiplication of n × n matrices,
T is n2 × n2 × n2

classical algorithm has rank R = n3

Strassen’s algorithm has rank R ≈ nlog2(7)
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Symmetric matrix times vector
Lets consider the simplest tensor contraction with symmetry

let A be an n-by-n symmetric matrix (Aij = Aji )
the symmetry is not preserved in matrix-vector multiplication

c = A · b

c i =
n∑

j=1
Aij · bj︸ ︷︷ ︸

nonsymmetric

generally n2 additions and n2 multiplications are performed
we can perform only

(n+1
2
)

multiplications using

c i =
n∑

j=1,j 6=i
Aij · (bi + bj)︸ ︷︷ ︸

symmetric

+

(
Aii −

n∑
j=1,j 6=i

Aij

)
· bi︸ ︷︷ ︸

low-order
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Symmetrized outer product

Consider a rank-2 outer product of vectors a and b of length n into
symmetric matrix C

C = a · bT + b · aT

C ij = ai · bj︸ ︷︷ ︸
nonsymmetric

+ aj · bi︸ ︷︷ ︸
permutation

usually computed via the n2 multiplications and n2 additions
new algorithm requires

(n+1
2
)

multiplications

C ij = (ai + aj) · (bi + bj)︸ ︷︷ ︸
Z ij︸ ︷︷ ︸

symmetric

− ai · bi︸ ︷︷ ︸
w i

− aj · bj︸ ︷︷ ︸
w j︸ ︷︷ ︸

low-order
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Symmetrized matrix multiplication
For symmetric matrices A and B, compute

C ij =
n∑

k=1

(
Aik · Bkj︸ ︷︷ ︸

nonsymmetric

+ Ajk · Bki︸ ︷︷ ︸
permutation

)

New algorithm requires
(n

3
)

+ O(n2) multiplications rather than n3

C ij =
∑

k
(Aij + Aik + Ajk) · (Bij + Bik + Bjk)︸ ︷︷ ︸

Z ijk – symmetric

− Aij ·
(∑

k
Bij + Bik + Bjk

)
︸ ︷︷ ︸

U ij – low-order

−Bij ·
(∑

k
Aij + Aik + Ajk

)
︸ ︷︷ ︸

V ij – low-order

−
∑

k
Aik · Bik︸ ︷︷ ︸

w i – low-order

−
∑

k
Ajk · Bjk︸ ︷︷ ︸

w j – low-order
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Comparison to Strassen’s algorithm
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Fully symmetric tensor contractions
For general symmetric tensor contraction algorithms,

A of order s + v , and
B of order v + t into
C of order s + t, defined as

we define the (nonsymmetrized) contraction as C = A�v B where

C i j =
∑

k∈{1,...,n}v

AikBkj

then define the symmetrized tensor contraction as

C i = [A�v B]i

The usual method first computes A�v B with(
n
s

)(
n
t

)(
n
v

)
≈ ns+t+v

s!t!v !

multiplications and additions
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Fast symmetrized product of symmetric matrices

Using symmetrization notation for s = t = v = 1, we have fast algorithm:

C ij = [AB]ij =
∑

k
(Aij + Aik + Ajk) · (Bij + Bik + Bjk)︸ ︷︷ ︸∑

k [A]ijk ·[B]ijk

− Aij ·
(∑

k
Bij + Bik + Bjk

)
︸ ︷︷ ︸

Aij ·
∑

k [B]ijk

−Bij ·
(∑

k
Aij + Aik + Ajk

)
︸ ︷︷ ︸

Bij ·
∑

k [A]ijk

−
∑

k
Aik · Bik −

∑
k

Ajk · Bjk︸ ︷︷ ︸
[Aik◦1B]ij

=
∑

k [A]ijk · [B]ijk − Aij
∑

k [B]ijk − Bij
∑

k [A]ijk − [A ◦1 B]ij

where A ◦1 B =
∑

k Aik · Bjk
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Fast fully-symmetric contraction algorithm
The fast algorithm is defined as follows (using ω = s + t + v)

C i =
∑

k∈{1,...,n}v

[A]ik · [B]ik︸ ︷︷ ︸
symmetric, requires

(n+ω−1
ω

)
multiplications

−
v∑

p+q=1

∑
k∈{1,...,n}v−p−q

( ∑
p∈{1,...,n}p

[A]ikp

)
·
( ∑

q∈{1,...,n}q

[B]ikq

)
︸ ︷︷ ︸

requires O(nω−1) multiplications

−
min(s,t)∑

r=1
[A�v+r B]i︸ ︷︷ ︸

requires O(nω−1) multiplications

Overall need
(n
ω

)
+ O(nω−1) = ns+t+v

(s+t+v)! + O(ns+t+v−1) multiplications, i.e.
(s + t + v)!/(s!t!v !) factor better
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Reduction in operation count of fast algorithm with
respect to standard
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(s, t, v) values for left and right graph tabulated below

ω 1 2 3 4 4 6
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Right graph (1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 1, 1) (2, 2, 1) (2, 2, 2)
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Nesting the fast algorithm

For partially-(anti)symmetric contractions we can
nest the new algorithm over each group of symmetric modes
reduction in mults can translate to reduction in the number of
operations
for Hankel matrices, yields O(n1.585) algorithm, which is better than
naive (O(n2)) but worse than DFT (O(n))
for coupled-cluster contractions, significant reductions in cost
(number of operations) can be achieved

CCSD 1.3X on a typical system
CCSDT 2.1X on a typical system
CCSDTQ 5.7X on a typical system
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Theoretical error bounds

We express error bounds in terms of γn = nε
1−nε , where ε is the machine

precision.

Let Ψ be the standard algorithm and Φ be the fast algorithm. The error
bound for the standard algorithm arises from matrix multiplication

||fl (Ψ(A,B))− C ||∞ ≤ γm · ||A||∞ · ||B||∞ where m =

(
n
v

)(
ω

v

)
.

The following error bound holds for the fast algorithm

||fl (Φ(A,B))−C ||∞ ≤ γm · ||A||∞ · ||B||∞ where m = 3
(

n
v

)(
ω

t

)(
ω

s

)
.
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Stability of symmetry preserving algorithms
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Communication complexity

Parallelization is crucial for BLAS-like operations and
scientific-applications

can assess parallel scalability by considering communication
complexity
various notions of communication complexity or cost exist
for the problems studied (which have high degree of concurrency), a
simple measure is most important

W – maximum number of words sent or received by any processor

can derive lower and upper bounds for W for a given bilinear
algorithm
generally assume that tensor data is evenly distributed initially
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Expansion in bilinear algorithms
The communication complexity of a bilinear algorithm depends on the
amount of data needed to compute subsets of the bilinear products.

Definition (Bilinear subalgorithm)
Given Λ = (F (A),F (B),F (C)), Λsub ⊆ Λ if ∃ projection matrix P, so

Λsub = (F (A)P,F (B)P,F (C)P).

The projection matrix extracts #cols(P) columns of each matrix.

Definition (Bilinear algorithm expansion)
A bilinear algorithm Λ has expansion bound EΛ : N3 → N, if for all

Λsub := (F (A)
sub,F

(B)
sub,F

(C)
sub) ⊆ Λ

we have rank(Λsub) ≤ EΛ

(
rank(F (A)

sub), rank(F (B)
sub), rank(F (C)

sub)
)

For matrix mult., Loomis-Whitney inequality → EMM(x , y , z) =
√xyz
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Communication cost of the standard algorithm

We consider communication bandwidth cost on a sequential machine with
cache size M.

The intermediate formed by the standard algorithm may be computed via
matrix multiplication with communication cost,

W (n, s, t, v ,M) = Θ

((n
s
)(n

t
)(n

v
)

√
M

+

(
n

s + v

)
+

(
n

t + v

)
+

(
n

s + t

))
.

The cost of symmetrizing the resulting intermediate is low-order or the
same.
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Communication cost of the fast algorithm

We can lower bound the cost of the fast algorithm using the
Hölder-Brascamp-Lieb inequality.

An algorithm that blocks Z symmetrically nearly attains the cost

W ′(n, s, t, v ,M) = O
( (n

ω

)
Mω/(ω−min(s,t,v))

·
[(
ω

t

)
+

(
ω

s

)
+

(
ω

v

)]

+

(
n

s + v

)
+

(
n

t + v

)
+

(
n

s + t

))
.

which is not far from the lower bound and attains it when s = t = v .
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Communication cost of symmetry preserving algorithms

For contraction of order s + v tensor with order v + t tensor
symmetry preserving algorithm requires (s+v+t)!

s!v !t! fewer multiplies
matrix-vector-like algorithms (min(s, v , t) = 0)

vertical communication dominated by largest tensor
horizontal communication asymptotically greater if only unique
elements are stored and s 6= v 6= t

matrix-matrix-like algorithms (min(s, v , t) > 0)
vertical and horizontal communication costs asymptotically greater for
symmetry preserving algorithm when s 6= v 6= t
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Summary of results

The following table lists the leading order number of multiplications F
required by the standard algorithm and F ′ by the fast algorithm for various
cases of symmetric tensor contractions

ω s t v F F ′ applications
2 1 1 0 n2 n2/2 syr2, syr2k, her2, her2k
2 1 0 1 n2 n2/2 symv, symm, hemv, hemm
3 1 1 1 n3 n3/6 symmetrized matmul
s+t+v s t v

(n
s
)(n

t
)(n

v
) (n

ω

)
any symmetric tensor contraction

High-level conclusions:
Algebraic complexity result for leveraging symmetry in contractions
Applications for basic complex arithmetic and partially symmetric
contractions
Caveats: more communication per flop, slightly higher numerical error
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Backup slides
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The fast algorithm for computing C forms the following intermediates with(n
ω

)
multiplications (where ω = s + t + v),

Zi =

( ∑
j∈χ(i)

Aj

)
·
( ∑

l∈χ(i)
Bl

)

Vi =

( ∑
j∈χ(i)

Aj

)
·
(∑

k1

∑
l∈χ(i∪k)

Bl

)

+

(∑
k1

∑
j∈χ(i∪k)

Aj

)
·
( ∑

l∈χ(i)
Bl

)

Wi =

( ∑
j∈χ(i)

Aj

)
·
( ∑

l∈χ(i)
Bl

)
Ci =

∑
k

Zi∪k −
∑

k
Vi∪k

−
∑

j∈χ(i)

(∑
k

Wj∪k

)
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