
Strassen-like algorithms for symmetric tensor contractions

Edgar Solomonik

Theory Seminar
University of Illinois at Urbana-Champaign

September 18, 2017

1 / 28 Fast symmetric tensor contractions

Outline

1 Introduction

2 Applications of tensor symmetry

3 Exploiting symmetry in matrix products

4 Exploiting symmetry in tensor contractions

5 Numerical error analysis

6 Communication cost analysis

7 Summary and conclusion

2 / 28 Fast symmetric tensor contractions

Terminology
A tensor T ∈ Rn1×···×nd has

order d (i.e. d modes / indices)
dimensions n1-by-· · · -by-nd (in this talk, usually each ni = n)
elements T i1...id = T i where i ∈ {1, . . . , n}d

We say a tensor is symmetric if for any j , k ∈ {1, . . . , n}

T i1...i j ...ik ...id = T i1...ik ...i j ...id

A tensor is antisymmetric (skew-symmetric) if for any j , k ∈ {1, . . . , n}

T i1...i j ...ik ...id = (−1)T i1...ik ...i j ...id

A tensor is partially-symmetric if such index interchanges are restricted to
be within subsets of {1, . . . , n}, e.g.

T ij
kl = T ji

kl = T ji
lk = T ij

lk

3 / 28 Fast symmetric tensor contractions

Tensor contractions
We work with contractions of tensors

A of order s + v , and
B of order v + t into
C of order s + t, defined as

C i j =
∑

k∈{1,...,n}v

AikBkj

requires O(ns+t+v) multiplications and additions, ω := s + t + v
assumes an index ordering, but does not lose generality
works with any symmetries of A and B
is extensible to symmetries of C via symmetrization (sum all
permutations of modes in C , denoted [C]i j)
generalizes simple matrix operations, e.g.

(s, t, v) = (1, 0, 1)︸ ︷︷ ︸
matrix-vector product

, (s, t, v) = (1, 1, 0)︸ ︷︷ ︸
vector outer product

, (s, t, v) = (1, 1, 1)︸ ︷︷ ︸
matrix-matrix product

4 / 28 Fast symmetric tensor contractions

Applications of symmetric tensor contractions

Symmetric and Hermitian matrix operations are part of the BLAS
matrix-vector products: symv (symm), hemv, (hemm)
symmetrized outer product: syr2 (syr2k), her2, (her2k)
these operations dominate symmetric/Hermitian diagonalization

Hankel matrices are order 2 log2(n) partially-symmetric tensors

H =

[
H11 HT

21
H21 H22

]

where H11,H21,H22 are also Hankel.

In general, partially-symmetric tensors are nested symmetric tensors
a nonsymmetric matrix is a vector of vectors
T ij

kl = T ji
kl = T ji

lk = T ij
lk is a symmetric matrix of symmetric matrices

5 / 28 Fast symmetric tensor contractions

Applications of partially-symmetric tensor contractions
High-accuracy methods in computational quantum chemistry

solve the multi-electron Schrödinger equation H|Ψ〉 = E |Ψ〉, where
H is a linear operator, but Ψ is a function of all electrons
use wavefunction ansatze like Ψ ≈ Ψ(k) = eT (k) |Ψ(k−1)〉 where Ψ(0)

is a mean-field (averaged) function and T (k) is an order 2k tensor,
acting as a multilinear excitation operator on the electrons
coupled-cluster methods use the above ansatze for k ∈ {2, 3, 4}
(CCSD, CCSDT, CCSDTQ)
solve iteratively for T (k), where each iteration has cost O(n2k+2),
dominated by contractions of partially antisymmetric tensors
for example, a dominant contraction in CCSD (k = 2) is

Zak̄
i c̄ =

n∑
b=1

n∑
j=1

T ab
ij · V

j k̄
bc̄

where T ab
ij = −T ba

ij = T ba
ji = −T ab

ji . We’ll show an algorithm that
requires n6 rather than 2n6 operations.

6 / 28 Fast symmetric tensor contractions

Fast algorithms
Strassen’s algorithm[

C11 C12
C21 C22

]
=

[
A11 A12
A21 A22

]
·
[
B11 B12
B21 B22

]
M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 −M5 + M7

C21 = M2 + M4

C12 = M3 + M5

C22 = M1 −M2 + M3 + M6

By minimizing number of products, minimize number of recursive calls

T (n) = 7T (n/2) + O(n2) = O(7log2 n) = O(nlog2 7)

For convolution, DFT matrix reduces from naive O(n2) products to O(n),
both of these are bilinear algorithms

7 / 28 Fast symmetric tensor contractions

How can we formally define an algorithm?

Formally defining a space of algorithms enables systematic exploration.

Definition (Bilinear algorithms (V. Pan, 1984))
A bilinear algorithm Λ = (F (A),F (B),F (C)) computes

c = F (C)[(F (A)Ta) ◦ (F (B)Tb)],

where a and b are inputs and ◦ is the Hadamard (pointwise) product.

8 / 28 Fast symmetric tensor contractions

Bilinear algorithms as tensor factorizations

A bilinear algorithm corresponds to a CP tensor decomposition

c i =
R∑

r=1
F (C)

ir

(∑
j

F (A)
jr aj

)(∑
k

F (B)
kr bk

)

=
∑

j

∑
k

(R∑
r=1

F (C)
ir F (A)

jr F (B)
kr

)
ajbk

=
∑

j

∑
k

T ijkajbk where T ijk =
R∑

r=1
F (C)

ir F (A)
jr F (B)

kr

For multiplication of n × n matrices,
T is n2 × n2 × n2

classical algorithm has rank R = n3

Strassen’s algorithm has rank R ≈ nlog2(7)

9 / 28 Fast symmetric tensor contractions

Symmetric matrix times vector
Lets consider the simplest tensor contraction with symmetry

let A be an n-by-n symmetric matrix (Aij = Aji)
the symmetry is not preserved in matrix-vector multiplication

c = A · b

c i =
n∑

j=1
Aij · bj︸ ︷︷ ︸

nonsymmetric

generally n2 additions and n2 multiplications are performed
we can perform only

(n+1
2
)

multiplications using

c i =
n∑

j=1,j 6=i
Aij · (bi + bj)︸ ︷︷ ︸

symmetric

+

(
Aii −

n∑
j=1,j 6=i

Aij

)
· bi︸ ︷︷ ︸

low-order

10 / 28 Fast symmetric tensor contractions

Symmetrized outer product

Consider a rank-2 outer product of vectors a and b of length n into
symmetric matrix C

C = a · bT + b · aT

C ij = ai · bj︸ ︷︷ ︸
nonsymmetric

+ aj · bi︸ ︷︷ ︸
permutation

usually computed via the n2 multiplications and n2 additions
new algorithm requires

(n+1
2
)

multiplications

C ij = (ai + aj) · (bi + bj)︸ ︷︷ ︸
Z ij︸ ︷︷ ︸

symmetric

− ai · bi︸ ︷︷ ︸
w i

− aj · bj︸ ︷︷ ︸
w j︸ ︷︷ ︸

low-order

11 / 28 Fast symmetric tensor contractions

Symmetrized matrix multiplication
For symmetric matrices A and B, compute

C ij =
n∑

k=1

(
Aik · Bkj︸ ︷︷ ︸

nonsymmetric

+ Ajk · Bki︸ ︷︷ ︸
permutation

)

New algorithm requires
(n

3
)

+ O(n2) multiplications rather than n3

C ij =
∑

k
(Aij + Aik + Ajk) · (Bij + Bik + Bjk)︸ ︷︷ ︸

Z ijk – symmetric

− Aij ·
(∑

k
Bij + Bik + Bjk

)
︸ ︷︷ ︸

U ij – low-order

−Bij ·
(∑

k
Aij + Aik + Ajk

)
︸ ︷︷ ︸

V ij – low-order

−
∑

k
Aik · Bik︸ ︷︷ ︸

w i – low-order

−
∑

k
Ajk · Bjk︸ ︷︷ ︸

w j – low-order

12 / 28 Fast symmetric tensor contractions

Comparison to Strassen’s algorithm

 1

 2

 4

 8

 16

 32

 64

10 100 1000 10000 100000 1e+06

[n
ω
/(s

!t!
v!

)]
/ #

m
ul

tip
lic

at
io

ns
(s

pe
ed

-u
p

ov
er

 c
la

ss
ic

al
 d

ire
ct

 e
va

lu
at

io
n

al
g.

)

ns/s! (matrix dimension)

Symmetry preserving alg. vs Strassen’s alg. (s=t=v=ω/3)

Strassen’s algorithm
Sym. preserving ω=6
Sym. preserving ω=3

13 / 28 Fast symmetric tensor contractions

Fully symmetric tensor contractions
For general symmetric tensor contraction algorithms,

A of order s + v , and
B of order v + t into
C of order s + t, defined as

we define the (nonsymmetrized) contraction as C = A�v B where

C i j =
∑

k∈{1,...,n}v

AikBkj

then define the symmetrized tensor contraction as

C i = [A�v B]i

The usual method first computes A�v B with(
n
s

)(
n
t

)(
n
v

)
≈ ns+t+v

s!t!v !

multiplications and additions
14 / 28 Fast symmetric tensor contractions

Fast symmetrized product of symmetric matrices

Using symmetrization notation for s = t = v = 1, we have fast algorithm:

C ij = [AB]ij =
∑

k
(Aij + Aik + Ajk) · (Bij + Bik + Bjk)︸ ︷︷ ︸∑

k [A]ijk ·[B]ijk

− Aij ·
(∑

k
Bij + Bik + Bjk

)
︸ ︷︷ ︸

Aij ·
∑

k [B]ijk

−Bij ·
(∑

k
Aij + Aik + Ajk

)
︸ ︷︷ ︸

Bij ·
∑

k [A]ijk

−
∑

k
Aik · Bik −

∑
k

Ajk · Bjk︸ ︷︷ ︸
[Aik◦1B]ij

=
∑

k [A]ijk · [B]ijk − Aij
∑

k [B]ijk − Bij
∑

k [A]ijk − [A ◦1 B]ij

where A ◦1 B =
∑

k Aik · Bjk

15 / 28 Fast symmetric tensor contractions

Fast fully-symmetric contraction algorithm
The fast algorithm is defined as follows (using ω = s + t + v)

C i =
∑

k∈{1,...,n}v

[A]ik · [B]ik︸ ︷︷ ︸
symmetric, requires

(n+ω−1
ω

)
multiplications

−
v∑

p+q=1

∑
k∈{1,...,n}v−p−q

(∑
p∈{1,...,n}p

[A]ikp

)
·
(∑

q∈{1,...,n}q

[B]ikq

)
︸ ︷︷ ︸

requires O(nω−1) multiplications

−
min(s,t)∑

r=1
[A�v+r B]i︸ ︷︷ ︸

requires O(nω−1) multiplications

Overall need
(n
ω

)
+ O(nω−1) = ns+t+v

(s+t+v)! + O(ns+t+v−1) multiplications, i.e.
(s + t + v)!/(s!t!v !) factor better

16 / 28 Fast symmetric tensor contractions

Reduction in operation count of fast algorithm with
respect to standard

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

1 2 3 4 5 6

re
du

ct
io

n
fa

ct
or

ω

Reduction in operation count for different entry types

(s+t=ω) entries are matrices
(s+t=ω) entries are complex
(s+t=ω) entries are real

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

1 2 3 4 5 6
ω

Reduction in operation count for different entry types

(s+t+v=ω) entries are matrices
(s+t+v=ω) entries are complex
(s+t+v=ω) entries are real

(s, t, v) values for left and right graph tabulated below

ω 1 2 3 4 4 6
Left graph (1, 0, 0) (1, 1, 0) (2, 1, 0) (2, 2, 0) (3, 2, 0) (3, 3, 0)
Right graph (1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 1, 1) (2, 2, 1) (2, 2, 2)

17 / 28 Fast symmetric tensor contractions

Nesting the fast algorithm

For partially-(anti)symmetric contractions we can
nest the new algorithm over each group of symmetric modes
reduction in mults can translate to reduction in the number of
operations
for Hankel matrices, yields O(n1.585) algorithm, which is better than
naive (O(n2)) but worse than DFT (O(n))
for coupled-cluster contractions, significant reductions in cost
(number of operations) can be achieved

CCSD 1.3X on a typical system
CCSDT 2.1X on a typical system
CCSDTQ 5.7X on a typical system

18 / 28 Fast symmetric tensor contractions

Theoretical error bounds

We express error bounds in terms of γn = nε
1−nε , where ε is the machine

precision.

Let Ψ be the standard algorithm and Φ be the fast algorithm. The error
bound for the standard algorithm arises from matrix multiplication

||fl (Ψ(A,B))− C ||∞ ≤ γm · ||A||∞ · ||B||∞ where m =

(
n
v

)(
ω

v

)
.

The following error bound holds for the fast algorithm

||fl (Φ(A,B))−C ||∞ ≤ γm · ||A||∞ · ||B||∞ where m = 3
(

n
v

)(
ω

t

)(
ω

s

)
.

19 / 28 Fast symmetric tensor contractions

Stability of symmetry preserving algorithms

20 / 28 Fast symmetric tensor contractions

Communication complexity

Parallelization is crucial for BLAS-like operations and
scientific-applications

can assess parallel scalability by considering communication
complexity
various notions of communication complexity or cost exist
for the problems studied (which have high degree of concurrency), a
simple measure is most important

W – maximum number of words sent or received by any processor

can derive lower and upper bounds for W for a given bilinear
algorithm
generally assume that tensor data is evenly distributed initially

21 / 28 Fast symmetric tensor contractions

Expansion in bilinear algorithms
The communication complexity of a bilinear algorithm depends on the
amount of data needed to compute subsets of the bilinear products.

Definition (Bilinear subalgorithm)
Given Λ = (F (A),F (B),F (C)), Λsub ⊆ Λ if ∃ projection matrix P, so

Λsub = (F (A)P,F (B)P,F (C)P).

The projection matrix extracts #cols(P) columns of each matrix.

Definition (Bilinear algorithm expansion)
A bilinear algorithm Λ has expansion bound EΛ : N3 → N, if for all

Λsub := (F (A)
sub,F

(B)
sub,F

(C)
sub) ⊆ Λ

we have rank(Λsub) ≤ EΛ

(
rank(F (A)

sub), rank(F (B)
sub), rank(F (C)

sub)
)

For matrix mult., Loomis-Whitney inequality → EMM(x , y , z) =
√xyz

22 / 28 Fast symmetric tensor contractions

Communication cost of the standard algorithm

We consider communication bandwidth cost on a sequential machine with
cache size M.

The intermediate formed by the standard algorithm may be computed via
matrix multiplication with communication cost,

W (n, s, t, v ,M) = Θ

((n
s
)(n

t
)(n

v
)

√
M

+

(
n

s + v

)
+

(
n

t + v

)
+

(
n

s + t

))
.

The cost of symmetrizing the resulting intermediate is low-order or the
same.

23 / 28 Fast symmetric tensor contractions

Communication cost of the fast algorithm

We can lower bound the cost of the fast algorithm using the
Hölder-Brascamp-Lieb inequality.

An algorithm that blocks Z symmetrically nearly attains the cost

W ′(n, s, t, v ,M) = O
((n

ω

)
Mω/(ω−min(s,t,v))

·
[(
ω

t

)
+

(
ω

s

)
+

(
ω

v

)]

+

(
n

s + v

)
+

(
n

t + v

)
+

(
n

s + t

))
.

which is not far from the lower bound and attains it when s = t = v .

24 / 28 Fast symmetric tensor contractions

 1

 2

 3

 4

1 2 3 4 5fa
ct

or
 o

f r
ed

uc
tio

n
in

 c
om

m
un

ic
at

io
n

vo
lu

m
e

ω

Reduction in communication (W/W’)

fast alg comm reduction forr s+t+v=ω

fast alg comm reduction for s+t=ω

25 / 28 Fast symmetric tensor contractions

Communication cost of symmetry preserving algorithms

For contraction of order s + v tensor with order v + t tensor
symmetry preserving algorithm requires (s+v+t)!

s!v !t! fewer multiplies
matrix-vector-like algorithms (min(s, v , t) = 0)

vertical communication dominated by largest tensor
horizontal communication asymptotically greater if only unique
elements are stored and s 6= v 6= t

matrix-matrix-like algorithms (min(s, v , t) > 0)
vertical and horizontal communication costs asymptotically greater for
symmetry preserving algorithm when s 6= v 6= t

26 / 28 Fast symmetric tensor contractions

Summary of results

The following table lists the leading order number of multiplications F
required by the standard algorithm and F ′ by the fast algorithm for various
cases of symmetric tensor contractions

ω s t v F F ′ applications
2 1 1 0 n2 n2/2 syr2, syr2k, her2, her2k
2 1 0 1 n2 n2/2 symv, symm, hemv, hemm
3 1 1 1 n3 n3/6 symmetrized matmul
s+t+v s t v

(n
s
)(n

t
)(n

v
) (n

ω

)
any symmetric tensor contraction

High-level conclusions:
Algebraic complexity result for leveraging symmetry in contractions
Applications for basic complex arithmetic and partially symmetric
contractions
Caveats: more communication per flop, slightly higher numerical error

27 / 28 Fast symmetric tensor contractions

Acknowledgements and references

Collaborators on various parts:
James Demmel
Torsten Hoefler
Devin Matthews

S., Demmel; Technical Report, ETH Zurich, December 2015.
S., Demmel, Hoefler; Technical Report, ETH Zurich, January 2015.

28 / 28 Fast symmetric tensor contractions

Backup slides

29 / 28 Fast symmetric tensor contractions

The fast algorithm for computing C forms the following intermediates with(n
ω

)
multiplications (where ω = s + t + v),

Zi =

(∑
j∈χ(i)

Aj

)
·
(∑

l∈χ(i)
Bl

)

Vi =

(∑
j∈χ(i)

Aj

)
·
(∑

k1

∑
l∈χ(i∪k)

Bl

)

+

(∑
k1

∑
j∈χ(i∪k)

Aj

)
·
(∑

l∈χ(i)
Bl

)

Wi =

(∑
j∈χ(i)

Aj

)
·
(∑

l∈χ(i)
Bl

)
Ci =

∑
k

Zi∪k −
∑

k
Vi∪k

−
∑

j∈χ(i)

(∑
k

Wj∪k

)

30 / 28 Fast symmetric tensor contractions

	Introduction
	Applications of tensor symmetry
	Exploiting symmetry in matrix products
	Exploiting symmetry in tensor contractions
	Numerical error analysis
	Communication cost analysis
	Summary and conclusion
	Appendix

