Strassen-like algorithms for symmetric tensor contractions

Edgar Solomonik

Theory Seminar University of Illinois at Urbana-Champaign

September 18, 2017

Outline

Introduction

- 2 Applications of tensor symmetry
- 3 Exploiting symmetry in matrix products
 - Exploiting symmetry in tensor contractions
- 5 Numerical error analysis
- 6 Communication cost analysis
 - 7 Summary and conclusion

Terminology

A tensor $\boldsymbol{T} \in \mathbb{R}^{n_1 imes \cdots imes n_d}$ has

• order *d* (i.e. *d* modes / indices)

• dimensions n_1 -by- \cdots -by- n_d (in this talk, usually each $n_i = n$)

• elements $\boldsymbol{T}_{\boldsymbol{i}_1...\boldsymbol{i}_d} = \boldsymbol{T}_{\boldsymbol{i}}$ where $\boldsymbol{i} \in \{1,\ldots,n\}^d$

We say a tensor is symmetric if for any $j, k \in \{1, \dots, n\}$

$$\boldsymbol{T}_{\boldsymbol{i}_1\dots\boldsymbol{i}_j\dots\boldsymbol{i}_k\dots\boldsymbol{i}_d} = \boldsymbol{T}_{\boldsymbol{i}_1\dots\boldsymbol{i}_k\dots\boldsymbol{i}_j\dots\boldsymbol{i}_d}$$

A tensor is antisymmetric (skew-symmetric) if for any $j, k \in \{1, ..., n\}$

$$\boldsymbol{T}_{\boldsymbol{i}_1\dots\boldsymbol{i}_j\dots\boldsymbol{i}_k\dots\boldsymbol{i}_d} = (-1)\boldsymbol{T}_{\boldsymbol{i}_1\dots\boldsymbol{i}_k\dots\boldsymbol{i}_j\dots\boldsymbol{i}_d}$$

A tensor is partially-symmetric if such index interchanges are restricted to be within subsets of $\{1, \ldots, n\}$, e.g.

$$\boldsymbol{T}_{kl}^{ij} = \boldsymbol{T}_{kl}^{ji} = \boldsymbol{T}_{lk}^{ji} = \boldsymbol{T}_{lk}^{ij}$$

Tensor contractions

We work with contractions of tensors

- **A** of order s + v, and
- **B** of order v + t into
- **C** of order s + t, defined as

$$C_{ij} = \sum_{k \in \{1,\ldots,n\}^{\nu}} A_{ik} B_{kj}$$

- requires $O(n^{s+t+v})$ multiplications and additions, $\omega:=s+t+v$
- assumes an index ordering, but does not lose generality
- works with any symmetries of **A** and **B**
- is extensible to symmetries of *C* via symmetrization (sum all permutations of modes in *C*, denoted [*C*]_{ij})
- generalizes simple matrix operations, e.g.

$$\underbrace{(s,t,v) = (1,0,1)}_{\text{matrix-vector product}}, \quad \underbrace{(s,t,v) = (1,1,0)}_{\text{vector outer product}}, \quad \underbrace{(s,t,v) = (1,1,1)}_{\text{matrix-matrix product}}$$

Applications of symmetric tensor contractions

Symmetric and Hermitian matrix operations are part of the BLAS

- matrix-vector products: symv (symm), hemv, (hemm)
- symmetrized outer product: syr2 (syr2k), her2, (her2k)
- these operations dominate symmetric/Hermitian diagonalization Hankel matrices are order $2\log_2(n)$ partially-symmetric tensors

$$oldsymbol{H} = egin{bmatrix} oldsymbol{H}_{11} & oldsymbol{H}_{21}^{ op} \ oldsymbol{H}_{21} & oldsymbol{H}_{22} \end{bmatrix}$$

where H_{11} , H_{21} , H_{22} are also Hankel.

In general, partially-symmetric tensors are nested symmetric tensors

• a nonsymmetric matrix is a vector of vectors

•
$$\boldsymbol{T}_{kl}^{ij} = \boldsymbol{T}_{kl}^{ji} = \boldsymbol{T}_{lk}^{ji} = \boldsymbol{T}_{lk}^{ij}$$
 is a symmetric matrix of symmetric matrices

Applications of partially-symmetric tensor contractions

High-accuracy methods in computational quantum chemistry

- solve the multi-electron Schrödinger equation $H|\Psi\rangle = E|\Psi\rangle$, where H is a linear operator, but Ψ is a function of *all* electrons
- use wavefunction ansatze like $\Psi \approx \Psi^{(k)} = e^{\mathcal{T}^{(k)}} |\Psi^{(k-1)}\rangle$ where $\Psi^{(0)}$ is a mean-field (averaged) function and $\mathcal{T}^{(k)}$ is an order 2k tensor, acting as a multilinear excitation operator on the electrons
- coupled-cluster methods use the above ansatze for k ∈ {2,3,4} (CCSD, CCSDT, CCSDTQ)
- solve iteratively for $T^{(k)}$, where each iteration has cost $O(n^{2k+2})$, dominated by contractions of partially antisymmetric tensors
- for example, a dominant contraction in CCSD (k = 2) is

$$oldsymbol{Z}_{iar{c}}^{aar{k}} = \sum_{b=1}^n \sum_{j=1}^n oldsymbol{T}_{ij}^{ab} \cdot oldsymbol{V}_{bar{c}}^{jar{k}}$$

where $T_{ij}^{ab} = -T_{ij}^{ba} = T_{ji}^{ba} = -T_{ji}^{ab}$. We'll show an algorithm that requires n^6 rather than $2n^6$ operations.

Fast algorithms

Strassen's algorithm

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$M_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \qquad C_{11} = M_1 + M_4 - M_5 + M_7$$

$$M_2 = (A_{21} + A_{22}) \cdot B_{11} \qquad C_{21} = M_2 + M_4$$

$$M_3 = A_{11} \cdot (B_{12} - B_{22}) \qquad C_{12} = M_3 + M_5$$

$$M_4 = A_{22} \cdot (B_{21} - B_{11}) \qquad C_{22} = M_1 - M_2 + M_3 + M_6$$

$$M_5 = (A_{11} + A_{12}) \cdot B_{22}$$

$$M_6 = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$$

$$M_7 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

By minimizing number of products, minimize number of recursive calls

$$T(n) = 7T(n/2) + O(n^2) = O(7^{\log_2 n}) = O(n^{\log_2 7})$$

For convolution, DFT matrix reduces from naive $O(n^2)$ products to O(n), both of these are bilinear algorithms

Formally defining a space of algorithms enables systematic exploration.

Definition (Bilinear algorithms (V. Pan, 1984))

A bilinear algorithm $\Lambda = (F^{(A)}, F^{(B)}, F^{(C)})$ computes

$$\boldsymbol{c} = \boldsymbol{F}^{(\boldsymbol{C})}[(\boldsymbol{F}^{(\boldsymbol{A})\top}\boldsymbol{a}) \circ (\boldsymbol{F}^{(\boldsymbol{B})\top}\boldsymbol{b})],$$

where \boldsymbol{a} and \boldsymbol{b} are inputs and \circ is the Hadamard (pointwise) product.

$$\begin{bmatrix} \mathbf{C} \end{bmatrix} = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf$$

Bilinear algorithms as tensor factorizations

A bilinear algorithm corresponds to a CP tensor decomposition

$$c_{i} = \sum_{r=1}^{R} F_{ir}^{(C)} \left(\sum_{j} F_{jr}^{(A)} a_{j} \right) \left(\sum_{k} F_{kr}^{(B)} b_{k} \right)$$
$$= \sum_{j} \sum_{k} \left(\sum_{r=1}^{R} F_{ir}^{(C)} F_{jr}^{(A)} F_{kr}^{(B)} \right) a_{j} b_{k}$$
$$= \sum_{j} \sum_{k} T_{ijk} a_{j} b_{k} \text{ where } T_{ijk} = \sum_{r=1}^{R} F_{ir}^{(C)} F_{jr}^{(A)} F_{kr}^{(B)}$$

For multiplication of $n \times n$ matrices,

- **T** is $n^2 \times n^2 \times n^2$
- classical algorithm has rank $R = n^3$
- Strassen's algorithm has rank $R \approx n^{\log_2(7)}$

Symmetric matrix times vector

Lets consider the simplest tensor contraction with symmetry

- let **A** be an *n*-by-*n* symmetric matrix $(\mathbf{A}_{ij} = \mathbf{A}_{ji})$
- the symmetry is not preserved in matrix-vector multiplication

$$c = A \cdot b$$

$$c_i = \sum_{j=1}^{n} \underbrace{A_{ij} \cdot b_j}_{\text{nonsymmetric}}$$

• generally n^2 additions and n^2 multiplications are performed • we can perform only $\binom{n+1}{2}$ multiplications using

$$\boldsymbol{c}_{i} = \sum_{j=1, j \neq i}^{n} \underbrace{\boldsymbol{A}_{ij} \cdot (\boldsymbol{b}_{i} + \boldsymbol{b}_{j})}_{\text{symmetric}} + \underbrace{\left(\boldsymbol{A}_{ii} - \sum_{j=1, j \neq i}^{n} \boldsymbol{A}_{ij}\right) \cdot \boldsymbol{b}_{i}}_{\text{low-order}}$$

Consider a rank-2 outer product of vectors \boldsymbol{a} and \boldsymbol{b} of length n into symmetric matrix \boldsymbol{C}

usually computed via the n^2 multiplications and n^2 additions new algorithm requires $\binom{n+1}{2}$ multiplications

$$\boldsymbol{C}_{ij} = \underbrace{(\boldsymbol{a}_i + \boldsymbol{a}_j) \cdot (\boldsymbol{b}_i + \boldsymbol{b}_j)}_{\boldsymbol{Z}_{ij}} - \underbrace{\boldsymbol{a}_i \cdot \boldsymbol{b}_i}_{\boldsymbol{w}_i} - \underbrace{\boldsymbol{a}_j \cdot \boldsymbol{b}_j}_{\boldsymbol{w}_j}}_{\text{low-order}}$$

Symmetrized matrix multiplication

For symmetric matrices **A** and **B**, compute

$$\boldsymbol{C}_{ij} = \sum_{k=1}^{n} \Big(\underbrace{\boldsymbol{A}_{ik} \cdot \boldsymbol{B}_{kj}}_{\text{nonsymmetric}} + \underbrace{\boldsymbol{A}_{jk} \cdot \boldsymbol{B}_{ki}}_{\text{permutation}} \Big)$$

New algorithm requires $\binom{n}{3} + O(n^2)$ multiplications rather than n^3

$$C_{ij} = \sum_{k} \underbrace{(\mathbf{A}_{ij} + \mathbf{A}_{ik} + \mathbf{A}_{jk}) \cdot (\mathbf{B}_{ij} + \mathbf{B}_{ik} + \mathbf{B}_{jk})}_{\mathbf{Z}_{ijk} - \text{symmetric}}$$

$$- \underbrace{\mathbf{A}_{ij} \cdot \left(\sum_{k} \mathbf{B}_{ij} + \mathbf{B}_{ik} + \mathbf{B}_{jk}\right)}_{\mathbf{U}_{ij} - \text{low-order}} - \underbrace{\mathbf{B}_{ij} \cdot \left(\sum_{k} \mathbf{A}_{ij} + \mathbf{A}_{ik} + \mathbf{A}_{jk}\right)}_{\mathbf{V}_{ij} - \text{low-order}}$$

$$- \underbrace{\sum_{k} \mathbf{A}_{ik} \cdot \mathbf{B}_{ik}}_{\mathbf{W}_{i} - \text{low-order}} \underbrace{\mathbf{A}_{jk} \cdot \mathbf{B}_{jk}}_{\mathbf{W}_{j} - \text{low-order}}$$

Fully symmetric tensor contractions

For general symmetric tensor contraction algorithms,

- **A** of order s + v, and
- **B** of order v + t into
- **C** of order s + t, defined as

we define the (nonsymmetrized) contraction as $\boldsymbol{C} = \boldsymbol{A} \odot_{\boldsymbol{v}} \boldsymbol{B}$ where

$$m{C}_{ij} = \sum_{m{k} \in \{1,...,n\}^{v}} m{A}_{im{k}} m{B}_{kj}$$

then define the symmetrized tensor contraction as

$$\boldsymbol{C}_{\boldsymbol{i}} = [\boldsymbol{A} \odot_{\boldsymbol{v}} \boldsymbol{B}]_{\boldsymbol{i}}$$

The usual method first computes $\boldsymbol{A} \odot_{\boldsymbol{v}} \boldsymbol{B}$ with

$$\binom{n}{s}\binom{n}{t}\binom{n}{v}\approx\frac{n^{s+t+v}}{s!t!v!}$$

multiplications and additions

Fast symmetrized product of symmetric matrices

Using symmetrization notation for s = t = v = 1, we have fast algorithm:

$$C_{ij} = [AB]_{ij} = \underbrace{\sum_{k} (A_{ij} + A_{ik} + A_{jk}) \cdot (B_{ij} + B_{ik} + B_{jk})}_{\sum_{k} [A]_{ijk} \cdot [B]_{ijk}}$$

$$- \underbrace{A_{ij} \cdot \left(\sum_{k} B_{ij} + B_{ik} + B_{jk}\right)}_{A_{ij} \cdot \sum_{k} [B]_{ijk}} - \underbrace{B_{ij} \cdot \left(\sum_{k} A_{ij} + A_{ik} + A_{jk}\right)}_{B_{ij} \cdot \sum_{k} [A]_{ijk}}$$

$$- \underbrace{\sum_{k} A_{ik} \cdot B_{ik} - \sum_{k} A_{jk} \cdot B_{jk}}_{[A_{ik} \circ 1B]_{ij}}$$

$$= \underbrace{\sum_{k} [A]_{ijk} \cdot [B]_{ijk} - A_{ij} \sum_{k} [B]_{ijk} - B_{ij} \sum_{k} [A]_{ijk} - [A \circ_{1} B]_{ij}}$$

where $\boldsymbol{A} \circ_1 \boldsymbol{B} = \sum_k \boldsymbol{A}_{ik} \cdot \boldsymbol{B}_{jk}$

Fast fully-symmetric contraction algorithm

The fast algorithm is defined as follows (using $\omega = s + t + v$)

$$C_{i} = \sum_{\substack{k \in \{1,...,n\}^{\nu} \\ \text{symmetric, requires } (n+\omega-1) \\ multiplications}} \sum_{\substack{k \in \{1,...,n\}^{\nu} \\ p \neq q=1}} \sum_{\substack{k \in \{1,...,n\}^{\nu-p-q} \\ multiplications}} \left(\sum_{\substack{p \in \{1,...,n\}^{p} \\ p \in \{1,...,n\}^{p}}} [A]_{ikp} \right) \cdot \left(\sum_{\substack{q \in \{1,...,n\}^{q} \\ q \in \{1,...,n\}^{q}}} [B]_{ikq} \right) \\ multiplications} \sum_{\substack{r = 1 \\ requires \ O(n^{\omega-1}) \\ multiplications}} \left(\sum_{\substack{r = 1 \\ requires \ O(n^{\omega-1}) \\ multiplications}} [A \odot_{\nu+r} B]_{ikp} \right) + O(n^{\omega-1}) = \frac{n^{s+t+\nu}}{(s+t+\nu)!} + O(n^{s+t+\nu-1}) \\ multiplications, i.e.$$

(s+t+v)!/(s!t!v!) factor better

16 / 28

Reduction in operation count of fast algorithm with respect to standard

(s, t, v) values for left and right graph tabulated below

ω	1	2	3	4	4	6
Left graph	(1, 0, 0)	(1, 1, 0)	(2, 1, 0)	(2, 2, 0)	(3, 2, 0)	(3,3,0)
Right graph	(1, 0, 0)	(1, 1, 0)	(1, 1, 1)	(2, 1, 1)	(2, 2, 1)	(2, 2, 2)

For partially-(anti)symmetric contractions we can

- nest the new algorithm over each group of symmetric modes
- reduction in mults can translate to reduction in the number of operations
- for Hankel matrices, yields $O(n^{1.585})$ algorithm, which is better than naive $(O(n^2))$ but worse than DFT (O(n))
- for coupled-cluster contractions, significant reductions in cost (number of operations) can be achieved
 - CCSD 1.3X on a typical system
 - CCSDT 2.1X on a typical system
 - CCSDTQ 5.7X on a typical system

We express error bounds in terms of $\gamma_n = \frac{n\epsilon}{1-n\epsilon}$, where ϵ is the machine precision.

Let Ψ be the standard algorithm and Φ be the fast algorithm. The error bound for the standard algorithm arises from matrix multiplication

$$|fl(\Psi(\boldsymbol{A},\boldsymbol{B})) - \boldsymbol{C}||_{\infty} \leq \gamma_{\boldsymbol{m}} \cdot ||\boldsymbol{A}||_{\infty} \cdot ||\boldsymbol{B}||_{\infty} \text{ where } \boldsymbol{m} = {\binom{n}{v}}{\binom{\omega}{v}}.$$

The following error bound holds for the fast algorithm

$$\| fl(\Phi(\boldsymbol{A},\boldsymbol{B})) - \boldsymbol{C} \|_{\infty} \leq \gamma_{\boldsymbol{m}} \cdot \| \boldsymbol{A} \|_{\infty} \cdot \| \boldsymbol{B} \|_{\infty} \text{ where } \boldsymbol{m} = 3 \binom{n}{v} \binom{\omega}{t} \binom{\omega}{s}$$

Stability of symmetry preserving algorithms

Parallelization is crucial for BLAS-like operations and scientific-applications

- can assess parallel scalability by considering communication complexity
- various notions of communication *complexity* or *cost* exist
- for the problems studied (which have high degree of concurrency), a simple measure is most important

W – maximum number of words sent or received by any processor

- $\bullet\,$ can derive lower and upper bounds for W for a given bilinear algorithm
- generally assume that tensor data is evenly distributed initially

Expansion in bilinear algorithms

The communication complexity of a bilinear algorithm depends on the amount of data needed to compute subsets of the bilinear products.

Definition (Bilinear subalgorithm)

Given $\Lambda = (F^{(A)}, F^{(B)}, F^{(C)})$, $\Lambda_{sub} \subseteq \Lambda$ if \exists projection matrix P, so

$$\Lambda_{\rm sub} = (\boldsymbol{F^{(A)}P}, \boldsymbol{F^{(B)}P}, \boldsymbol{F^{(C)}P}).$$

The projection matrix extracts $\# cols(\mathbf{P})$ columns of each matrix.

Definition (Bilinear algorithm expansion)

A bilinear algorithm Λ has expansion bound $\mathcal{E}_\Lambda:\mathbb{N}^3\to\mathbb{N},$ if for all

$$\Lambda_{\mathrm{sub}} := (\boldsymbol{F}_{\mathrm{sub}}^{(\boldsymbol{A})}, \boldsymbol{F}_{\mathrm{sub}}^{(\boldsymbol{B})}, \boldsymbol{F}_{\mathrm{sub}}^{(\boldsymbol{C})}) \subseteq \Lambda$$

we have $\mathsf{rank}(\Lambda_{\mathrm{sub}}) \leq \mathcal{E}_{\Lambda}\left(\mathsf{rank}(\boldsymbol{F}_{\mathrm{sub}}^{(\boldsymbol{A})}),\mathsf{rank}(\boldsymbol{F}_{\mathrm{sub}}^{(\boldsymbol{B})}),\mathsf{rank}(\boldsymbol{F}_{\mathrm{sub}}^{(\boldsymbol{C})})\right)$

For matrix mult., Loomis-Whitney inequality $o \mathcal{E}_{\mathsf{MM}}(x,y,z) = \sqrt{xyz}$

We consider communication bandwidth cost on a sequential machine with cache size M.

The intermediate formed by the standard algorithm may be computed via matrix multiplication with communication cost,

$$W(n,s,t,v,M) = \Theta\left(\frac{\binom{n}{s}\binom{n}{t}\binom{n}{v}}{\sqrt{M}} + \binom{n}{s+v} + \binom{n}{t+v} + \binom{n}{s+t}\right).$$

The cost of symmetrizing the resulting intermediate is low-order or the same.

We can lower bound the cost of the fast algorithm using the Hölder-Brascamp-Lieb inequality.

An algorithm that blocks Z symmetrically nearly attains the cost

$$W'(n, s, t, v, M) = O\left(\frac{\binom{n}{\omega}}{M^{\omega/(\omega-\min(s,t,v))}} \cdot \left[\binom{\omega}{t} + \binom{\omega}{s} + \binom{\omega}{v}\right] + \binom{n}{s+v} + \binom{n}{t+v} + \binom{n}{s+t}.$$

which is not far from the lower bound and attains it when s = t = v.

For contraction of order s + v tensor with order v + t tensor

- symmetry preserving algorithm requires $\frac{(s+v+t)!}{s!v!t!}$ fewer multiplies
- matrix-vector-like algorithms $(\min(s, v, t) = 0)$
 - vertical communication dominated by largest tensor
 - horizontal communication asymptotically greater if only unique elements are stored and $s \neq v \neq t$
- matrix-matrix-like algorithms $(\min(s, v, t) > 0)$
 - vertical and horizontal communication costs asymptotically greater for symmetry preserving algorithm when $s \neq v \neq t$

Summary of results

The following table lists the leading order number of multiplications F required by the standard algorithm and F' by the fast algorithm for various cases of symmetric tensor contractions

ω	S	t	v	F	<i>F'</i>	applications
2	1	1	0	n ²	$n^{2}/2$	syr2, syr2k, her2, her2k
2	1	0	1	n ²	$n^{2}/2$	symv, symm, hemv, hemm
3	1	1	1	n ³	$n^{3}/6$	symmetrized matmul
s+t+v	5	t	v	$\binom{n}{s}\binom{n}{t}\binom{n}{v}$	$\binom{n}{\omega}$	any symmetric tensor contraction

High-level conclusions:

- Algebraic complexity result for leveraging symmetry in contractions
- Applications for basic complex arithmetic and partially symmetric contractions
- Caveats: more communication per flop, slightly higher numerical error

Collaborators on various parts:

- James Demmel
- Torsten Hoefler
- Devin Matthews
- S., Demmel; Technical Report, ETH Zurich, December 2015.
- S., Demmel, Hoefler; Technical Report, ETH Zurich, January 2015.

The fast algorithm for computing C forms the following intermediates with $\binom{n}{\omega}$ multiplications (where $\omega = s + t + v$),

$$Z_{i} = \left(\sum_{j \in \chi(i)} A_{j}\right) \cdot \left(\sum_{I \in \chi(i)} B_{I}\right)$$
$$V_{i} = \left(\sum_{j \in \chi(i)} A_{j}\right) \cdot \left(\sum_{k_{1}} \sum_{I \in \chi(i \cup k)} B_{I}\right)$$
$$+ \left(\sum_{k_{1}} \sum_{j \in \chi(i \cup k)} A_{j}\right) \cdot \left(\sum_{I \in \chi(i)} B_{I}\right)$$
$$W_{i} = \left(\sum_{j \in \chi(i)} A_{j}\right) \cdot \left(\sum_{I \in \chi(i)} B_{I}\right)$$
$$C_{i} = \sum_{k} Z_{i \cup k} - \sum_{k} V_{i \cup k}$$
$$- \sum_{j \in \chi(i)} \left(\sum_{k} W_{j \cup k}\right)$$