
Algorithms as multilinear tensor equations

Edgar Solomonik

Department of Computer Science
ETH Zurich

Technische Universität München

18.1.2016

Edgar Solomonik Algorithms as multilinear tensor equations 1/ 18



Tensors and algebraic structures

We consider the expression of data as indexable collections of elements
and algorithms as applications of algebraic operators.

Definition (Algebraic structure)

A set of elements (type), potentially equipped with operators and identities

Examples: set, monoid, group, semiring, ring

Definition (Tensor)

A collection of elements of a single type, T, with some order k and
dimensions (n1, . . . , nk), with elements Ti1...ik

Examples: scalar, vector, matrix

An algebraic structure defines summation and contraction of tensors.

Edgar Solomonik Algorithms as multilinear tensor equations 2/ 18



Numerical tensor computations

Classical matrix-based computations over the (+, ·) ring

stencil computations (iterative methods for sparse linear systems)

x(l) := Ax(l−1)

dense matrix factorizations (direct solvers for dense linear systems)

A ≈ LU A ≈ QR A ≈ UDVT

tensor contractions (peturbation theory, solvers for nonlinear systems)∑
f

F a
f T

fb
ij −

∑
n

F n
i T

ab
nj +

1

2

∑
e,f

V ab
ef T

ef
ij +

1

2

∑
m,n

Vmn
ij T ab

mn −
∑
e,m

V am
ei T eb

mj

tensor decompositions (compression)

Ti1...ik ≈
∑
j

W
(1)
i1j
· · ·W (k)

ik j

Ti1...ik ≈
∑

j1...jk−1

W
(1)
i1j1

W
(2)
j1i2j2
· · ·W (k−1)

jk−2ik−1jk−1
W

(k)
jk−1ik

Edgar Solomonik Algorithms as multilinear tensor equations 3/ 18



Discrete tensor algorithms

Alternative algebraic structures expand potential of tensor computations

graph algorithms via tropical (geodetic) semiring (min,+)

single-source shortest-paths via Bellman-Ford (stencil-like)
all-pairs shortest-paths (APSP) via Floyd-Warshall (LU-like)
APSP via path doubling (matrix-multiplication-like)
betweenness centrality
hypergraphs are representable by tensors

recursion via higher order tensors

prefix sum, scan
FFT or other butterfly networks
bitonic sort

Edgar Solomonik Algorithms as multilinear tensor equations 4/ 18



Cost model for parallel algorithms

Given a schedule that specifies all work and communication tasks on p
processors, we consider the following costs, measured along dependent
sequences of tasks (as in α− β, BSP, and LogGP models).

Definition (F – computation cost)

Number of operations performed

Definition (Q – vertical communication cost)

Amount of data moved between memory and cache

Definition (W – horizontal communication cost)

Amount of data moved between processors

Definition (S – synchronization cost)

Number of distinct messages sent between processors

Edgar Solomonik Algorithms as multilinear tensor equations 5/ 18



Bilinear algorithms

A bilinear algorithm Λ is defined by three matrices, Λ = (F(A),F(B),F(C))
Given input vectors a and b, it computes vector,

c = F(C)[(F(A)Ta) ◦ (F(B)Tb)]

where ◦ is the Hadamard (pointwise) product

the number of columns in the three matrices is equal and is the
bilinear algorithm rank, denoted rank(Λ)

the number of rows in each matrix corresponds to the number of
inputs (dimensions of a and b) and outputs (dimension of c)

Edgar Solomonik Algorithms as multilinear tensor equations 6/ 18



Bilinear algorithm expansion

A bilinear algorithm Λ = (F(A),F(B),F(C)) has expansion bound
EΛ : N3 → N, if for all projection matrices P,

Λsub = (F(A)P,F(B)P,F(C)P)

has rank bounded by EΛ,

rank(Λsub) ≤ EΛ

(
rank(F(A)P), rank(F(B)P), rank(F(C)P)

)

Edgar Solomonik Algorithms as multilinear tensor equations 7/ 18



Communication lower bounds

Consider any algorithm Λ = (F(A),F(B),F(C)) and expansion bound EΛ.
For a cache size H, Λ requires total vertical communication cost,

Q ≥
[

2H
rank(Λ)

Emax
Λ (H)

]
where Emax

Λ (H) := max
c(A)+c(B)+c(C)=3H

EΛ(c(A), c(B), c(C)).

Given p processors, Λ requires horizontal communication cost,

W ≥ min
EΛ

(
c(A)+ r(A)

p
,c(B)+ r(B)

p
,c(B)+ r(C)

p

)
≥ rank(Λ)

p

[
c(A) + c(B) + c(C)

]

where r (A), r (B), and r (C) are the number of rows in F(A), F(B), and F(C),
respectively.

Edgar Solomonik Algorithms as multilinear tensor equations 8/ 18



Dependency interval expansion

Consider a bilinear algorithm that computes a set of multiplications V with
a partial ordering, we denote a dependency interval between a, b ∈ V as

[a, b] = {a, b} ∪ {c : a < c < b, c ∈ V }

If there exists {v1, . . . , vn} ∈ V with vi < vi+1 and
∣∣[vi+1, vi+k ]

∣∣ = Θ(kd)
for all k ∈ N, then

F · Sd−1 = Ω(nd)

where F is the computation cost and S is the synchronization cost

Further, if the algorithm has bilinear expansion E , satisfying

Emax(H) = Ω(H
d

d−1 ), then

W · Sd−2 = Ω(nd−1)

Edgar Solomonik Algorithms as multilinear tensor equations 9/ 18



Example: diamond DAG

For the n × n diamond DAG (d = 2),

F · S2−1 = F · S = Ω((n/b)b2) · Ω(n/b) = Ω(n2)

W · S2−2 = W = Ω((n/b)b) = Ω(n)

idea goes back to Papadimitriou and Ullman, 1987

Edgar Solomonik Algorithms as multilinear tensor equations 10/ 18



Tradeoffs involving synchronization

For triangular solve with an n × n matrix

FTRSV · STRSV = Ω
(
n2
)

For Cholesky of an n × n matrix

FCHOL · S2
CHOL = Ω

(
n3
)

WCHOL · SCHOL = Ω
(
n2
)

For computing s applications of a (2m + 1)d -point stencil

FSt · Sd
St = Ω

(
m2d · sd+1

)
WSt · Sd−1

St = Ω
(
md · sd

)

Edgar Solomonik Algorithms as multilinear tensor equations 11/ 18



Communication-optimal dense matrix algorithms

For any c ∈ [1, p1/3], use cn2/p memory per processor and obtain

WDMF = O(n2/
√
cp), SDMF = O(

√
cp)

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e 

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D SUMMA
2D SUMMA

ScaLAPACK PDGEMM

 0

 20

 40

 60

 80

 100

256 512 1024 2048
P

er
ce

nt
ag

e 
of

 m
ac

hi
ne

 p
ea

k
#nodes

LU without pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU

LU with pairwise pivoting extended to tournament pivoting

QR with Givens rotations extended to Householder transformations

full-to-banded reduction for symmetric eigenvalue problem

successive band reduction for symmetric eigenvalue problem

Edgar Solomonik Algorithms as multilinear tensor equations 12/ 18



Communication-efficient sparse matrix computations

Iterative stencil computations

previous work: in-time blocking

lowers synchronization cost
lowers vertical communication cost
increases horizontal communication cost when mesh at least 2D

new ‘cyclic’ algorithm, in-time blocks executed bulk synchronously

lowers vertical communication cost
maintains minimal horizontal communication cost
increases synchronization cost

alternatives are both optimal in different lower bound regimes

Multiplication of a sparse matrix by a dense matrix

key primitive with many applications

iterative solvers
tensor computations (MP3 or coupled cluster with localized orbitals)
graph algorithms (Bellman-Ford, APSP, betweenness centrality)

communication-efficient 3D algorithms and lower bound analysis

Edgar Solomonik Algorithms as multilinear tensor equations 13/ 18



Exploiting symmetry in tensors

Coupled cluster methods for electronic structure calculations

approximates electronic wavefunction using 2r -order tensor
representing r -electron correlation

systematically improvable, CCSD, CCSDT, CCSDTQ (r = 1, 2, 3)

cost dominated by contractions of partially antisymmetric tensors

Exploiting tensor (anti)symmetry

saves storage and provides easy reduction in cost if set of contraction
multiplications is symmetric

new symmetry-preserving algorithm uses algebraic reorganization to
reduce cost (lowers bilinear algorithm rank) when set of contraction
multiplications breaks tensor symmetry

Wikj = Aik · Bkj → Zikj = (Aik + Akj + Aji ) · (Bik + Bkj + Bji )

nested use reduces cost of CCSD by about 1.3, CCSDT by about 2.1
Edgar Solomonik Algorithms as multilinear tensor equations 14/ 18



Tensor algebra as a programming abstraction

Cyclops Tensor Framework

contraction/summation/functions of tensors

distributed symmetric-packed/sparse storage via cyclic layout

parallelization via MPI+OpenMP(+CUDA)

Edgar Solomonik Algorithms as multilinear tensor equations 15/ 18



Tensor algebra as a programming abstraction

Cyclops Tensor Framework

contraction/summation/functions of tensors

distributed symmetric-packed/sparse storage via cyclic layout

parallelization via MPI+OpenMP(+CUDA)

Jacobi iteration example code snippet

void Jacobi(Matrix <> A, Vector <> b, int n){
Matrix <> R(A);
R["ii"] = 0.0;
Vector <> x(n), d(n), r(n);
Function <> inv ([]( double & d){ return 1./d; });
d["i"] = inv(A["ii"]); // set d to inverse of diagonal of A
do {

x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual

} while (r.norm2() > 1.E-6); // check for convergence
}

Edgar Solomonik Algorithms as multilinear tensor equations 15/ 18



Tensor algebra as a programming abstraction

Cyclops Tensor Framework

contraction/summation/functions of tensors

distributed symmetric-packed/sparse storage via cyclic layout

parallelization via MPI+OpenMP(+CUDA)

Møller-Plesset perturbation theory (MP3) code snippet

Z["abij"] += Fab["af"]*T["fbij"];
Z["abij"] -= Fij["ni"]*T["abnj"];
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];
Z["abij"] -= Vaibj["amei"]*T["ebmj"];

Edgar Solomonik Algorithms as multilinear tensor equations 15/ 18



Betweenness centrality

Betweenness centrality code snippet, for k of n nodes

void btwn_central(Matrix <int > A, Matrix <path > P, int n, int k){
Monoid <path > mon(...,

[]( path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

}, ...);

Matrix <path > Q(n,k,mon); // shortest path matrix
Q["ij"] = P["ij"];

Function <int ,path > append ([]( int w, path p){
return path(w+p.w, p.m);

}; );

for (int i=0; i<n; i++)
Q["ij"] = append(A["ik"],Q["kj"]);

...
}

Edgar Solomonik Algorithms as multilinear tensor equations 16/ 18



Performance highlights

Coupled cluster calculations using dense tensors

 4

 8

 16

 32

 64

 128

 256

 512

 1024

512 1024 2048 4096 8192 16384 32768

Te
ra

flo
ps

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 1

 2
 4

 8
 16

 32
 64

 128
 256

 512

32 64 128 256 512 1024 2048 4096

Te
ra

flo
ps

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

MP3 and all-pairs shortest-paths using sparse tensors

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44

24 48 96 192 384

se
co

nd
s/

ite
ra

tio
n

#cores

Weak scaling of MP3 (m=40, n=160 on 24 cores)

dense
16% sparse
8% sparse
4% sparse
2% sparse
1% sparse

 0

 20

 40

 60

 80

 100

 120

 140

24 48 96 192 384

se
co

nd
s

#cores

Weak scaling of APSP (n=2K on 24 cores)

regular path doubling
sparse path doubling

Edgar Solomonik Algorithms as multilinear tensor equations 17/ 18



Future work

further work sparse and symmetric tensor computations
bridging the gap between abstractions and application performance
bilinear algorithm complexity – fast matrix multiplication

tensor decompositions
communication-efficient parallel algorithms and lower bounds
symmetry-preserving tensor decomposition algorithms
programming abstractions for dense and sparse tensors

sets of tensor operations
most algorithms correspond to multiple dependent tensors operations
communication cost analysis for sets of contractions
scheduling, blocking, and decomposition of multiple tensor operations
higher-level programming abstractions

application-driven development
tensor decompositions, sparsity, symmetry all motivated by electronic
structure applications
optimization of primitives serves as feedback loop for development of
new electronic structure methods

Edgar Solomonik Algorithms as multilinear tensor equations 18/ 18



Backup slides

Edgar Solomonik Algorithms as multilinear tensor equations 19/ 18



Symmetry preserving algorithm vs Strassen’s algorithm

 1

 2

 4

 8

 16

 32

 64

10 100 1000 10000 100000 1e+06

[n
ω
/(s

!t!
v!

)] 
/ #

m
ul

tip
lic

at
io

ns
(s

pe
ed

-u
p 

ov
er

 c
la

ss
ic

al
 d

ire
ct

 e
va

lu
at

io
n 

al
g.

)

ns/s! (matrix dimension)

Symmetry preserving alg. vs Strassen’s alg. (s=t=v=ω/3)

Strassen’s algorithm
Sym. preserving ω=6
Sym. preserving ω=3

Edgar Solomonik Algorithms as multilinear tensor equations 20/ 18



Nesting of bilinear algorithms

Given two bilinear algorithms:

Λ1 =(F
(A)
1 ,F

(B)
1 ,F

(C)
1 )

Λ2 =(F
(A)
2 ,F

(B)
2 ,F

(C)
2 )

We can nest them by computing their tensor product

Λ1 ⊗ Λ2 :=(F
(A)
1 ⊗ F

(A)
2 ,F

(B)
1 ⊗ F

(B)
2 ,F

(C)
1 ⊗ F

(C)
2 )

rank(Λ1 ⊗ Λ2) = rank(Λ1) · rank(Λ2)

Edgar Solomonik Algorithms as multilinear tensor equations 21/ 18



Comparison with NWChem

NWChem is a commonly-used distributed-memory quantum chemistry
method suite

provides CCSD and CCSDT

uses Global Arrays a Partitioned Global Address Space (PGAS) for
tensor data partitioning

derives equations via Tensor Contraction Engine (TCE)

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSD on Edison

NWChem w20
w15
w10
w8

Aquarius-CTF w20
w15
w10
w8

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSDT on Edison

NWChem w3
w2

Aquarius-CTF w4
w3
w2

Edgar Solomonik Algorithms as multilinear tensor equations 22/ 18


	Representation
	Analysis
	Execution
	Conclusion

