Algorithms as multilinear tensor equations

Edgar Solomonik

Department of Computer Science
ETH Zurich

Technische Universitat Miinchen

18.1.2016

Edgar Solomonik Algorithms as multilinear tensor equations 1/ 18

Tensors and algebraic structures

We consider the expression of data as indexable collections of elements
and algorithms as applications of algebraic operators.

Definition (Algebraic structure)
A set of elements (type), potentially equipped with operators and identitiesJ

Examples: set, monoid, group, semiring, ring

Definition (Tensor)

A collection of elements of a single type, T, with some order k and

dimensions (ny, ..., ng), with elements T;

Examples: scalar, vector, matrix

An algebraic structure defines summation and contraction of tensors.

Edgar Solomonik Algorithms as multilinear tensor equations 2/ 18

Numerical tensor computations

Classical matrix-based computations over the (+,-) ring
@ stencil computations (iterative methods for sparse linear systems)

x(l) — Ax(I_l)
@ dense matrix factorizations (direct solvers for dense linear systems)
A~LU A=~QR A=xUDV'
@ tensor contractions (peturbation theory, solvers for nonlinear systems)
1
SATE S AT ST ST T - ST
n e,f e,m

@ tensor decompositions (compression)

i
S z
i i |15 [is i i i i
(k—1)
Z VVI111 11212 T V‘/jk—zik—ljk 1 Jk— l’k mh mh mh m
|1’7—‘|4 I I, i3 Iy

Jteedk—1
Edgar Solomonik Algorithms as multilinear tensor equations 3/ 18

Discrete tensor algorithms

Alternative algebraic structures expand potential of tensor computations
@ graph algorithms via tropical (geodetic) semiring (min, +)

single-source shortest-paths via Bellman-Ford (stencil-like)

all-pairs shortest-paths (APSP) via Floyd-Warshall (LU-like)

APSP via path doubling (matrix-multiplication-like)

betweenness centrality

hypergraphs are representable by tensors

@ recursion via higher order tensors

e prefix sum, scan
o FFT or other butterfly networks
e bitonic sort

Edgar Solomonik Algorithms as multilinear tensor equations 4/ 18

Cost model for parallel algorithms

Given a schedule that specifies all work and communication tasks on p
processors, we consider the following costs, measured along dependent
sequences of tasks (as in a — 3, BSP, and LogGP models).

Definition (F — computation cost)

Number of operations performed

Definition (Q — vertical communication cost)

Amount of data moved between memory and cache

Definition (W — horizontal communication cost)

Amount of data moved between processors

Definition (S — synchronization cost)

Number of distinct messages sent between processors

Edgar Solomonik Algorithms as multilinear tensor equations 5/ 18

Bilinear algorithms
A bilinear algorithm A is defined by three matrices, A = (F(A) F(B) F(C))
Given input vectors a and b, it computes vector,

c = FO[FATa) o (FEB)Tp)]

where o is the Hadamard (pointwise) product

T T

X X X X XX X X X X X X X X X

X X X X X X X XX X X X X X X

X X X X X X XX XX X X

Cl=|x X X X X X X al|o X X X b
X X X X X X X X X

X X Xx X X X X X X X

X X X X X X X XX X

@ the number of columns in the three matrices is equal and is the
bilinear algorithm rank, denoted rank(A)

@ the number of rows in each matrix corresponds to the number of
inputs (dimensions of a and b) and outputs (dimension of c)

Edgar Solomonik Algorithms as multilinear tensor equations 6/ 18

Bilinear algorithm expansion

A bilinear algorithm A = (F®) F(B) F()) has expansion bound
En N3 5 N, if for all projection matrices P,

Asub = (F(A)Pa F(B)Pa F(C)P)

T T

X X X X X X X X X X X X X X X
X X X X X X X XX X X X X X X

X X X X X X XX XX X X

Cl=|x X X X X X X al|lo X X X b
X X X X X X X X X

X X X X X X X X X X X

X X X X X X X XX X XX X X XXX

has rank bounded by &x,

rank(Asun) < En (rank(F(A)P), rank(F®)P), rank(F(C)P)>

Edgar Solomonik Algorithms as multilinear tensor equations 7/ 18

Communication lower bounds

Consider any algorithm A = (F() F(B) F(C)) and expansion bound &n.
For a cache size H, A requires total vertical communication cost,

0= [Pz

where EA'*(H) = max En(c, c(B) (O,
cA+cB)+c(O)=3H
Given p processors, A requires horizontal communication cost,

w > min {C(A) +cB) 4 (O
& (C(A)Jrﬂ (B B C(B)+@)>M
)

’ p p)= P

where r(A), r(B), and r(©) are the number of rows in F(A), F(B), and F(C),
respectively.

Edgar Solomonik Algorithms as multilinear tensor equations 8/ 18

Dependency interval expansion
Consider a bilinear algorithm that computes a set of multiplications V with
a partial ordering, we denote a dependency interval between a,b € V as

[a,b] ={a,b}U{c:a<c< b,ceV}

If there exists {v1,...,v,} € V with v; < vj4; and ’[v,-+1, v,-+k]‘ = @(kd)
for all k € N, then
F-S9 1 =Q(n%)

where F is the computation cost and S is the synchronization cost

Further, if the algorithm has bilinear expansion &, satisfying
d
EMX(H) = Q(H7-T1), then

W. 5972 =Qq(n")

Edgar Solomonik Algorithms as multilinear tensor equations 9/ 18

Example: diamond DAG

0 Sea

Se S ood
SRR
NS nre

Multicolored dependency intervals

Monochrome dependency intervals

Dependency chain P

For the n x n diamond DAG (d = 2),

?)

(n/b)b?) - Q(n/b) = Q(n

F.-S>1=F.S=Q(
Q((n/b)b)
idea goes back to Papadimitriou and Ullman, 1987

w.s*2=w

= Q(n)

10/ 18

Algorithms as multilinear tensor equations

Edgar Solomonik

Tradeoffs involving synchronization

For triangular solve with an n x n matrix

Frrsv - Strsv = Q (n°)

For Cholesky of an n x n matrix

FenoL - Sénor, = @ () Wenow - Scuow = 2 (n°)

For computing s applications of a (2m + 1)9-point stencil

Fsi - Sgt =0 <m2d . sd+1> W - 55{1 =0 <md . sd)

Edgar Solomonik Algorithms as multilinear tensor equations 11/ 18

Communication-optimal dense matrix algorithms

For any c € [1, p*/3], use cn?/p memory per processor and obtain

Wpomr = O(n”/\/cp), Spmr = O(y/cp)
2.5D MM on BG/P (n=65,536) LU without pivoting on BG/P (n=65,536)
100 T T 100 T T
: 2,50 SUMMA —+— ! ideal scaling ------
2D SUMMA ‘ 25D LU ——
. Scal APACK PDGEMM —&— . ; 20 LU
% 80) 4 % e} : : .
3 : 3 : :
2 2 i |
° ° : !
c c i i
S 60 [4 € 60 : £ =
S S
£ T ——
s 5 : '
I3 S 40 B : il
g g g
£ £
5 5 i ¥
8 8 : :
& & 20r : ; J
o i i o i i
256 512 1024 2048 256 512 1024 2048

#nodes #nodes
LU with pairwise pivoting extended to tournament pivoting
QR with Givens rotations extended to Householder transformations
full-to-banded reduction for symmetric eigenvalue problem

successive band reduction for symmetric eigenvalue problem

Edgar Solomonik Algorithms as multilinear tensor equations 12/ 18

Communication-efficient sparse matrix computations

Iterative stencil computations
@ previous work: in-time blocking

o lowers synchronization cost
o lowers vertical communication cost
@ increases horizontal communication cost when mesh at least 2D

@ new ‘cyclic’ algorithm, in-time blocks executed bulk synchronously

o lowers vertical communication cost
e maintains minimal horizontal communication cost
e increases synchronization cost

@ alternatives are both optimal in different lower bound regimes
Multiplication of a sparse matrix by a dense matrix

@ key primitive with many applications

e iterative solvers
e tensor computations (MP3 or coupled cluster with localized orbitals)
e graph algorithms (Bellman-Ford, APSP, betweenness centrality)

@ communication-efficient 3D algorithms and lower bound analysis

Edgar Solomonik Algorithms as multilinear tensor equations 13/ 18

Exploiting symmetry in tensors

Coupled cluster methods for electronic structure calculations

@ approximates electronic wavefunction using 2r-order tensor
representing r-electron correlation

@ systematically improvable, CCSD, CCSDT, CCSDTQ (r =1,2,3)
@ cost dominated by contractions of partially antisymmetric tensors
Exploiting tensor (anti)symmetry

@ saves storage and provides easy reduction in cost if set of contraction
multiplications is symmetric

@ new symmetry-preserving algorithm uses algebraic reorganization to
reduce cost (lowers bilinear algorithm rank) when set of contraction
multiplications breaks tensor symmetry

Wij = Ai - Bj — Zixg = (Aik + Aj + Aji) - (Bik + By + Bji)

@ nested use reduces cost of CCSD by about 1.3, CCSDT by about 2.1

Edgar Solomonik Algorithms as multilinear tensor equations 14/ 18

Tensor algebra as a programming abstraction

Cyclops Tensor Framework
@ contraction/summation/functions of tensors
o distributed symmetric-packed/sparse storage via cyclic layout
@ parallelization via MPI+OpenMP(4+CUDA)

Edgar Solomonik Algorithms as multilinear tensor equations 15/ 18

Tensor algebra as a programming abstraction

Cyclops Tensor Framework
@ contraction/summation/functions of tensors
o distributed symmetric-packed/sparse storage via cyclic layout
@ parallelization via MPI+OpenMP(4+CUDA)

Jacobi iteration example code snippet

void Jacobi(Matrix<> A, Vector<> b, int n){
Matrix<> R(A);
R["ii"] = 0.0;
Vector<> x(n), d(n), r(n);
Function<> inv([](double & d){ return 1./d; });
d["i"]1 = inv(AL"ii"1); // set d to inverse of diagonal of A
do {
x["i"] = d["i"1*(b["i"]1-R["ij"1*x["j"1);
r["i"]1 = bL["i"1-AL"ij"1*x["j"1; // compute residual
} while (r.norm2() > 1.E-6); // check for convergence

}

Edgar Solomonik Algorithms as multilinear tensor equations 15/ 18

Tensor algebra as a programming abstraction

Cyclops Tensor Framework
@ contraction/summation/functions of tensors
o distributed symmetric-packed/sparse storage via cyclic layout
@ parallelization via MPI+OpenMP(4+CUDA)

Mgller-Plesset perturbation theory (MP3) code snippet

Z["abij"] += Fab["af"1*T["fbij"1;
Z["abij"] -= Fij["ni"1xT["abnj"I;
Z["abij"] += 0.5xVabcd["abef"I*T["efij"1;
2["abij”] += @.5%Vijkl["mnij"1*T["abmn"1;
Z["abij"] -= Vaibj["amei”1*T["ebmj"];

Edgar Solomonik Algorithms as multilinear tensor equations 15/ 18

Betweenness centrality

Betweenness centrality code snippet, for k of n nodes

void btwn_central (Matrix<int> A, Matrix<path> P, int n, int k){
Monoid<path> mon(...,
[I(path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

o)

Matrix<path> Q(n,k,mon); // shortest path matrix
Q["ijll] = P[llij"];

Function<int,path> append([]1(int w, path p){
return path(w+p.w, p.m);

3D,

for (int i=0; i<n; i++)
QL"ij"]1 = append(AL["ik"1,Q["kj"1);

Edgar Solomonik Algorithms as multilinear tensor equations 16/ 18

Performance highlights

Teraflops

Edgar Solomonik

1024

512

Coupled cluster calculations using dense tensors

Weak scaling on BlueGene/Q

256

128
64
32

16[}

8

4
512

Aquarius-CTF CCSD —(—
Aquarius-CTF CCSDT --)¢--

i i
1024 2048 4096 8192 16384 32768
#nodes

Teraflops

512

Weak scaling on Edison

256 -
128 |-
64

Aquarius.CTF CCSD —1—

X i [

i i i
256 512 1024 2048 4096
#nodes

MP3 and all-pairs shortest-paths using sparse tensors

Weak scaling of MP3 (m=40, n=160 on 24 cores)

Weak scaling of APSP (n=2K on 24 cores)

T T T 3

dense —+—

16% sparse =--@=-
8% sparse - -~
4% sparse -+ -
2% sparse

140

120 |

100

T T T
regular path doubling —+—
sparse path doubling 4

1% sparse
" 8 80 1
2
5
8
g 60 4
40 4
20 1
i i i ° I I I
48 % 192 384 24 48 % 192 384
#oores #oores

Algorithms as

multilinear tensor equations

Future work

o further work sparse and symmetric tensor computations
e bridging the gap between abstractions and application performance
e bilinear algorithm complexity — fast matrix multiplication
@ tensor decompositions
e communication-efficient parallel algorithms and lower bounds
e symmetry-preserving tensor decomposition algorithms
e programming abstractions for dense and sparse tensors
@ sets of tensor operations
e most algorithms correspond to multiple dependent tensors operations
e communication cost analysis for sets of contractions
e scheduling, blocking, and decomposition of multiple tensor operations
o higher-level programming abstractions
@ application-driven development
e tensor decompositions, sparsity, symmetry all motivated by electronic
structure applications
e optimization of primitives serves as feedback loop for development of
new electronic structure methods

Edgar Solomonik Algorithms as multilinear tensor equations 18/ 18

Backup slides

Edgar Solomonik Algorithms as multilinear tensor equations 19/ 18

Symmetry preserving algorithm vs Strassen’s algorithm

Symmetry preserving alg. vs Strassen’s alg. (s=t=v=w/3)

64 T T | T
Strassen’s algorithm = ‘
Sym. preserving =6 =w=== = h

32 - Sym. preserving ®=3

[n®/(s'tIv!)] / #multiplications
(speed-up over classical direct evaluation alg.)

10 100 1000 10000 100000 1e+06
n®/s! (matrix dimension)

Edgar Solomonik Algorithms as multilinear tensor equations 20/ 18

Nesting of bilinear algorithms

Given two bilinear algorithms:

P E)
e ~(F B9, FO)

We can nest them by computing their tensor product

Meh =(FM o FM F® o FP) FO o FO)
rank(A1 ® Ap) =rank(A1) - rank(A2)

Edgar Solomonik Algorithms as multilinear tensor equations 21/ 18

Comparison with NWChem

NWChem is a commonly-used distributed-memory quantum chemistry
method suite

@ provides CCSD and CCSDT

@ uses Global Arrays a Partitioned Global Address Space (PGAS) for
tensor data partitioning

@ derives equations via Tensor Contraction Engine (TCE)

Strong scaling CCSDT on Edison
Strong scaling CCSD on Edison

T T T T T
— T T T T L NWChem w3 --¢-- |
ol Wt] 1024 v -
Aquarius-CTF wé —f—
256 w3 —%—]
256 " w2 —H—
2 2
3
§ 6] § 64
& @ [
16 16
4 -
4 i i i ! i T I
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
#nodes #nodes

Edgar Solomonik Algorithms as multilinear tensor equations 22/ 18

	Representation
	Analysis
	Execution
	Conclusion

