
Provably efficient algorithms for multilinear algebra

Edgar Solomonik

Department of Computer Science
ETH Zurich

University of California, Davis

March 28, 2016

Provably efficient algorithms for multilinear algebra 1/27

Outline and highlights

1 Communication-optimal algorithms for linear solvers
algorithms with p1/6 less communication on p processors for LU, QR, eigs
topology-aware implementations: 12X speed-up for MM, 2X for LU
novel lower bounds on communication and synchronization

2 Tensor (multidimensional matrix) computations
Cyclops Tensor Framework (CTF): first distributed-memory tensor
contraction framework
sparse multidimensional arrays, arbitrary types, semirings

3 Massively-parallel electronic structure calculations
codes using CTF for wavefunction methods: Aquarius, QChem, VASP, Psi4
coupled cluster faster than NWChem by > 10X, nearly 1 petaflop/s

4 Preserving symmetry in tensor contractions
factor of ω! fewer multiplications for symmetric contractions of cost nω

up to 9X speed-up for partially-symmetric contractions in coupled cluster

Provably efficient algorithms for multilinear algebra 2/27

Cost model for parallel algorithms

Algorithms should minimize communication, not just computation

data movement and synchronization cost more energy than flops

two types of data movement:

vertical (intranode memory–cache)
horizontal (internode network transfers)

synchronization: number of messages, latency

Provably efficient algorithms for multilinear algebra 3/27

Critical path costs

Given a schedule consider the following costs, accumulated along chains of
tasks (as in α− β, BSP, and LogGP models):

F – computation cost

Q – vertical communication cost

W – horizontal communication cost

S – synchronization cost

Provably efficient algorithms for multilinear algebra 4/27

Communication lower bounds: previous work

Multiplication of n × n matrices

horizontal communication lower bound1

WMM = Ω

(
n2

p2/3

)
memory-dependent horizontal communication lower bound2

WMM = Ω

(
n3

p
√
M

)
with M = cn2/p memory, hope to obtain communication cost

W = O(n2/
√
cp)

libraries like ScaLAPACK, Elemental optimal only for c = 1

1
Aggarwal, Chandra, Snir, TCS, 1990

2
Irony, Toledo, Tiskin, JPDC, 2004

Provably efficient algorithms for multilinear algebra 5/27

Communication-efficient matrix multiplication

Communication-avoiding algorithms for matrix multiplication have been
studied extensively1

They continue to be attractive on modern architectures2

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D SUMMA
2D SUMMA

ScaLAPACK PDGEMM

 0

 50

 100

 150

 200

256 512 1024 2048 4096
G

ig
af

lo
p/

s/
no

de

#nodes

Matrix multiplication strong scaling on Mira (BG/Q)

2.5D MM n=65,536
2D MM n=65,536

2.5D MM n=16,384
2D MM n=16,384

12X speed-up, 95% reduction in comm. for n = 8K on 16K nodes of BG/P

1
Berntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar, IBM, 1995;

McColl, Tiskin, Algorithmica, 1999; ...
2

S., Bhatele, Demmel, SC, 2011

Provably efficient algorithms for multilinear algebra 6/27

Communication-efficient LU factorization

For any c ∈ [1, p1/3], use cn2/p memory per processor and obtain

WLU = O(n2/
√
cp)

L₀₀

U₀₀

U₀₃

U₀₃

U₀₁

L₂₀
L₃₀

L₁₀

(A)

(B)

U

L

(C)
(D)

U₀₀

U₀₀

L₀₀

L₀₀

U₀₀

L₀₀

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

LU with tournament pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU
ScaLAPACK PDGETRF

LU with pairwise pivoting1 extended to tournament pivoting2

first implementation of a communication-optimal LU algorithm2

1
Tiskin, FGCS, 2007

2
S., Demmel, Euro-Par, 2011

Provably efficient algorithms for multilinear algebra 7/27

Communication-efficient QR factorization

WQR = O(n2/
√
cp) using Givens rotations1

Householder form can be reconstructed quickly from TSQR2

Q = I − YTY T ⇒ LU(I − Q)→ (Y ,TY T)

enables communication-optimal Householder QR3

Householder aggregation yields performance improvements

 0

 5

 10

 15

 20

144 288 576 1152 2304 4608 9216

Te
ra

flo
ps

#cores

QR weak scaling on Cray XE6 (n=15K to n=131K)

Two-Level CAQR-HR
Elemental QR

ScaLAPACK QR

Further directions: 2.5D QR implementation, lower bounds, pivoting

1
Tiskin, FGCS, 2007

2
Ballard, Demmel, Grigori, Jacquelin, Nguyen, S., IPDPS, 2014

3
S., UCB, 2014

Provably efficient algorithms for multilinear algebra 8/27

Communication-efficient eigenvalue computation

For the dense symmetric matrix eigenvalue problem1

WSE = O(n2/
√
cp)

above costs obtained by left-looking algorithm with Householder aggregation,
however, with increased vertical communication

successive band reduction minimizes both vertical and horizontal
communication costs

Further directions: implementations (ongoing), eigenvector computation, SVD

1
S., UCB, 2014. S., Hoefler, Demmel, in preparation

Provably efficient algorithms for multilinear algebra 9/27

Synchronization cost lower bounds

Unlike matrix multiplication, dense matrix factorizations have polynomial
depth (contain a long dependency path)

Given M = cn2/p memory:

matrix multiplication synchronization cost bound1

SMM = Θ

(√
p/c3 + log p

)
algorithms for Cholesky, LU, QR, SVD do not attain this bound

SLU = Θ (
√
cp)

need smaller block size for lower communication cost → higher
synchronization cost

1
Ballard, Demmel, Holtz, Schwartz, SIAM JMAA, 2011

Provably efficient algorithms for multilinear algebra 10/27

Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the n × n diamond DAG,1

F · S = Ω(n2)

We generalize this idea2

additionally consider horizontal communication

allow arbitrary (polynomial or exponential) interval expansion

1
Papadimitriou, Ullman, SIAM JC, 1987

2
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Provably efficient algorithms for multilinear algebra 11/27

Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms,
represented via dependency hypergraphs:1

For triangular solve with an n × n matrix,

FTRSV · STRSV = Ω
(
n2
)

For Cholesky of an n × n matrix,

FCHOL · S2
CHOL = Ω

(
n3
)

WCHOL · SCHOL = Ω
(
n2
)

Therefore, the costs

WCHOL = Θ(n2/
√
cp), SCHOL = Θ(

√
cp),

are optimal

1
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Provably efficient algorithms for multilinear algebra 12/27

Synchronization tradeoffs in stencils

Our lower bound analysis extends to sparse iterative methods:1

For computing s applications of a (2m + 1)d -point stencil,

FSt · Sd
St = Ω

(
m2d · sd+1

)
, WSt · Sd−1

St = Ω
(
md · sd

)
time-blocking lowers synchronization and vertical communication costs,
but raises horizontal communication

we suggest alternative approach that minimizes vertical and horizontal
communication, but not synchronization

further directions:

implementation of proposed algorithm
lower bounds for graph traversals

1
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Provably efficient algorithms for multilinear algebra 13/27

Bridging the gap between algorithms and applications

How can we package communication-avoiding algorithms for
distributed-memory programs?

challenges: complicated data layouts (multidimensional processor grids,
cyclic distributions), global coordination, large tuning space

need high-level abstractions, algebraic language, interoperability

solution: library for algebraic multidimensional array computations

Cyclops Tensor Framework: C++ library, MPI+OpenMP+BLAS(+CUDA)
https://github/com/solomonik/ctf
first lets consider matrices/vectors, then higher-order tensors

Provably efficient algorithms for multilinear algebra 14/27

https://github/com/solomonik/ctf

A library for tensor computations

Cyclops Tensor Framework1

implicit for loops based on index notation (Einstein summation)

matrix sums, multiplication, Hadamard product (tensor contractions)

distributed symmetric-packed/sparse storage via cyclic layout

1
S., Hammond, Demmel, UCB, 2011. S., Matthews, Hammond, Demmel, IPDPS, 2013

Provably efficient algorithms for multilinear algebra 15/27

A library for tensor computations

Cyclops Tensor Framework

implicit for loops based on index notation (Einstein summation)

matrix sums, multiplication, Hadamard product (tensor contractions)

distributed symmetric-packed/sparse storage via cyclic layout

Jacobi iteration (solves Ax = b iteratively) example code snippet

Vector <> Jacobi(Matrix <> A, Vector <> b, int n){
... // split A = R + diag (1./d)
do {

x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual

} while (r.norm2() > 1.E-6); // check for convergence
return x;

}

Provably efficient algorithms for multilinear algebra 15/27

A library for tensor computations

Cyclops Tensor Framework

implicit for loops based on index notation (Einstein summation)

matrix sums, multiplication, Hadamard product (tensor contractions)

distributed symmetric-packed/sparse storage via cyclic layout

Jacobi iteration (solves Ax = b iteratively) example code snippet

Vector <> Jacobi(Matrix <> A, Vector <> b, int n){
Matrix <> R(A);
R["ii"] = 0.0;
Vector <> x(n), d(n), r(n);
Function <> inv ([](double & d){ return 1./d; });
d["i"] = inv(A["ii"]); // set d to inverse of diagonal of A
do {

x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual

} while (r.norm2() > 1.E-6); // check for convergence
return x;

}

Provably efficient algorithms for multilinear algebra 15/27

Algebraic shortest path computations

Tropical (geodetic) semiring

additive (idempotent) operator: a⊕ b := min(a, b), identity: ∞
multiplicative operator: a⊗ b := a + b, identity: 0

matrix multiplication defined accordingly,

C = A⊗ B := ∀i , j ,Cij = min
k

(Aik + Bkj)

Bellman-Ford algorithm (SSSP) for n × n adjacency matrix A:

1 initialize v (1) = (0,∞,∞, . . .)
2 compute v (n) via recurrence

v (i+1) = v (i) ⊕ (v (i) ⊗ A)

Can also express all-pairs shortest-paths (APSP) using tropical semiring

With other semirings/element-wise functions can formulate any graph
algorithm that updates adjacent edge ↔ vertex labels

Provably efficient algorithms for multilinear algebra 15/27

Bellman–Ford Algorithm using CTF

CTF code for n node single-source shortest-paths (SSSP) calculation:

World w(MPI_COMM_WORLD);
Semiring <int > s(INT_MAX/2,

[](int a, int b){ return min(a,b); },
MPI_MIN ,
0,
[](int a, int b){ return a+b; });

Matrix <int > A(n,n,SP,w,s); // Adjacency matrix
Vector <int > v(n,w,s); // Distances from starting vertex

... // Initialize A and v

//Bellman -Ford SSSP algorithm
for (int t=0; t<n; t++){

v["i"] += v["j"]*A["ji"];
}

Provably efficient algorithms for multilinear algebra 16/27

Betweenness centrality

Betweenness centrality code snippet, for k of n nodes

void btwn_central(Matrix <int > A, Matrix <path > P, int n, int k){
Monoid <path > mon(...,

[](path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

}, ...);

Matrix <path > Q(n,k,mon); // shortest path matrix
Q["ij"] = P["ij"];

Function <int ,path > append ([](int w, path p){
return path(w+p.w, p.m);

};);

for (int i=0; i<n; i++)
Q["ij"] = append(A["ik"],Q["kj"]);

...
}

Provably efficient algorithms for multilinear algebra 17/27

Performance of CTF for dense computations

CTF is highly tuned for massively-parallel machines

virtualized multidimensional processor grids

topology-aware mapping and collective communication

performance-model-driven algorithm selection done at runtime

optimized redistribution kernels for matrix/tensor transposition

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

4096 8192 16384 32768 65536 131072 262144

Te
ra

flo
p/

s

#cores

BG/Q matrix multiplication

CTF
Scalapack

Provably efficient algorithms for multilinear algebra 18/27

Performance of CTF for sparse computations

multiplication of a sparse matrix and a dense matrix1

 0

 2

 4

 6

 8

 10

 12

 14

 16

24 48 96 192 384

se
co

nd
s

#cores

Weak scaling of SPMM (16K-by-16K-by-2K on 24 cores)

dense
16% sparse
8% sparse
4% sparse
2% sparse
1% sparse

 0

 1

 2

 3

 4

 5

24 48 96 192 384 768

se
co

nd
s

#cores

Strong scaling of 16K-by-16K-by-2K SPMM

dense
16% sparse
8% sparse
4% sparse
2% sparse
1% sparse

All-pairs shortest-paths based on path doubling with sparsification1

 0

 20

 40

 60

 80

 100

 120

 140

24 48 96 192 384

se
co

nd
s

#cores

Weak scaling of APSP (n=2K on 24 cores)

regular path doubling
sparse path doubling

 0

 4

 8

 12

 16

 20

 24

24 48 96 192 384 768

se
co

nd
s

#cores

Strong scaling of APSP with n=2K

regular path doubling
sparse path doubling

1
S., Hoefler, Demmel, arXiv, 2015

Provably efficient algorithms for multilinear algebra 19/27

Tensor computations as programming abstractions

Tensors (scalars, vectors, matrices, etc.) are convenient abstractions for
multidimensional data

one type of object for any homogeneous dataset

enable expression of symmetries, sparsity

Matrix computations ⊂ tensor computations

= often reduce to or employ matrix algorithms

can leverage high performance matrix libraries

+ high-order tensors can ‘act’ as many matrix unfoldings

+ symmetries lower memory footprint and cost

+ tensor factorizations (CP, Tucker, tensor train, ...)

Provably efficient algorithms for multilinear algebra 20/27

Applications of high-order tensor representations

Numerical solution to differential equations

higher-order Taylor series expansion terms

nonlinear terms and differential operators

Computer vision and graphics

2D image ⊗ angle ⊗ time

classification, compression (tensor factorizations, sparsity)

Machine learning

convolutional neural networks, high-order statistics

reduced-order models, recommendation systems (tensor factorizations)

Graph computations

hypergraphs, time-dependent graphs

clustering/partitioning/path-finding (eigenvector computations)

Divide-and-conquer algorithms representable by tensor folding

bitonic sort, FFT, scans

Provably efficient algorithms for multilinear algebra 21/27

Tensors for computational chemistry/physics

Manybody Schrödinger equation

“curse of dimensionality” – exponential state space

Condensed matter physics

tensor network models (e.g. DMRG), tensor per lattice site

highly symmetric multilinear tensor representation

exponential state space localized → factorized tensor form

Quantum chemistry (electronic structure calculations)

models of molecular structure and chemical reactions

methods for calculating electronic correlation:

“Post Hartree-Fock”: configuration interaction, coupled cluster,
Møller-Plesset perturbation theory

multi-electron states as tensors,
e.g. electron ⊗ electron ⊗ orbital ⊗ orbital

nonlinear equations of partially (anti)symmetric tensors

interactions diminish with distance → sparsity, low rank
Provably efficient algorithms for multilinear algebra 22/27

Coupled cluster using CTF

Extracted from Aquarius (Devin Matthews’ code,
https://github.com/devinamatthews/aquarius)

FMI["mi"] += 0.5*WMNEF["mnef"]*T2["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T2["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T2["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T2["afin"];

Z2["abij"] = WMNEF["ijab"];
Z2["abij"] += FAE["af"]*T2["fbij"];
Z2["abij"] -= FMI["ni"]*T2["abnj"];
Z2["abij"] += 0.5*WABEF["abef"]*T2["efij"];
Z2["abij"] += 0.5*WMNIJ["mnij"]*T2["abmn"];
Z2["abij"] -= WAMEI["amei"]*T2["ebmj"];

CTF is used within Aquarius, QChem, VASP, and Psi4

Provably efficient algorithms for multilinear algebra 23/27

https://github.com/devinamatthews/aquarius

Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum
chemistry method suite

provides Coupled Cluster methods: CCSD and CCSDT

derives equations via Tensor Contraction Engine (TCE)

generates contractions as blocked loops leveraging Global Arrays

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSD on Edison

NWChem w20
w15
w10
w8

Aquarius-CTF w20
w15
w10
w8

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSDT on Edison

NWChem w3
w2

Aquarius-CTF w4
w3
w2

Provably efficient algorithms for multilinear algebra 24/27

Coupled cluster on IBM BlueGene/Q and Cray XC30

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ1

 4

 8

 16

 32

 64

 128

 256

 512

 1024

512 1024 2048 4096 8192 16384 32768

Te
ra

flo
ps

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 10

 20

 30

 40

 50

 60

512 1024 2048 4096 8192 16384

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 1

 2
 4

 8
 16

 32
 64

 128
 256

 512

32 64 128 256 512 1024 2048 4096

Te
ra

flo
ps

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 50

 100

 150

 200

 250

 300

 350

32 64 128 256 512 1024 2048 4096

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

1
S., Matthews, Hammond, Demmel, JPDC, 2014

Provably efficient algorithms for multilinear algebra 25/27

Symmetry preserving algorithms

Tensor symmetry (e.g. Aij = Aji) reduces memory and cost1

for order d tensor, d! less memory

matrix-vector multiplication (Aij = Aji)
1

ci =
∑
j

Aijbj =
∑
j

Aij(bi + bj)−
(∑

j

Aij

)
bi

Aijbj 6= Ajibi but Aij(bi + bj) = Aji (bj + bi) → (1/2)n2 multiplies

for symmetrized contraction of symmetric order s + v and v + t tensors

(s + t + v)!

s!t!v !
fewer multiplies

numerically stable (by forward error bounds and in experiments)

lower overall cost for partially symmetric contractions

up to 9X for select contractions, 1.3X/2.1X for CCSD/CCSDT

Hermitian BLAS/LAPACK operations with 25% less cost

ongoing: relationship to fast structured matrix multiplication
1

S., Demmel; Technical Report, ETH Zurich, 2015.

Provably efficient algorithms for multilinear algebra 26/27

Impact and future work

Many further directions (theory, implementation, application)
with much overlap (tensor equations, factorizations, symmetries)

Cyclops Tensor Framework
X already widely-adapted in quantum chemistry, many requests for features

integrate matrix/tensor factorizations
optimize across multiple tensor operations (scheduling, layout persistence)
engage high-impact application domains

tensor networks for condensed matter-physics
convolutional neural networks
recommender systems (tensor completion)

communication-avoiding algorithms
X existing fast implementations already used by applications (e.g. QBall)

find efficient methods of searching larger tuning spaces
algorithms for computing eigenvectors, SVD, tensor factorizations
analyze (randomized) algorithms for sparse matrix factorization

symmetry in tensor computations
cost improvements X → library implementations → application speed-ups
study symmetries in tensor equations and factorizations
consider other symmetries and relation to fast matrix multiplication

Provably efficient algorithms for multilinear algebra 27/27

Backup slides

Provably efficient algorithms for multilinear algebra 28/27

Lower bounds for symmetry preserving algorithms

Bilinear algorithms1 enable robust communication lower bounds

a bilinear algorithm is defined by matrices F (A),F (B),F (C),

c = F (C)[(F (A)Ta) ◦ (F (B)Tb)]

where ◦ is the Hadamard (pointwise) product

communication lower bounds derived based on matrix rank2

1
Pan, Springer, 1984

2
S., Hoefler, Demmel, in preparation

Provably efficient algorithms for multilinear algebra 29/27

Nesting of bilinear algorithms

Given two bilinear algorithms:

Λ1 =(F
(A)
1 ,F

(B)
1 ,F

(C)
1)

Λ2 =(F
(A)
2 ,F

(B)
2 ,F

(C)
2)

We can nest them by computing their tensor product

Λ1 ⊗ Λ2 :=(F
(A)
1 ⊗ F

(A)
2 ,F

(B)
1 ⊗ F

(B)
2 ,F

(C)
1 ⊗ F

(C)
2)

rank(Λ1 ⊗ Λ2) = rank(Λ1) · rank(Λ2)

Provably efficient algorithms for multilinear algebra 30/27

Symmetry preserving algorithm vs Strassen’s algorithm

 1

 2

 4

 8

 16

 32

 64

10 100 1000 10000 100000 1e+06

[n
ω
/(s

!t!
v!

)]
/ #

m
ul

tip
lic

at
io

ns
(s

pe
ed

-u
p

ov
er

 c
la

ss
ic

al
 d

ire
ct

 e
va

lu
at

io
n

al
g.

)

ns/s! (matrix dimension)

Symmetry preserving alg. vs Strassen’s alg. (s=t=v=ω/3)

Strassen’s algorithm
Sym. preserving ω=6
Sym. preserving ω=3

Provably efficient algorithms for multilinear algebra 31/27

Block-cyclic algorithm for s-step methods

For s-steps of a (2m + 1)d -point stencil with block-size of H1/d/m,

WKr = O

(
msnd

H1/dp

)
SKr = O(snd/(pH)) QKr = O

(
msnd

H1/dp

)
which are good when H = Θ(nd/p), so the algorithm is useful when the
cache size is a bit smaller than nd/p

Provably efficient algorithms for multilinear algebra 32/27

2.5D LU on MIC

 100

 150

 200

 250

 300

 350

 400

 450

16 32 64 128 256

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Stampede (MIC + Sandy Bridge)

2.5D hybrid LU n=131,072
2D hybrid LU n=131,072

2.5D pure-cpu LU n=131,072
2.5D hybrid LU n=65,536

2D hybrid LU n=65,536
2.5D pure-cpu LU n=65,536

Provably efficient algorithms for multilinear algebra 33/27

Topology-aware mapping on BG/Q

 0

 20

 40

 60

 80

 100

256 512 1024 2048 4096

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Mira (BG/Q), n=65,536

2D LU, custom mapping
2D LU, default mapping

Provably efficient algorithms for multilinear algebra 34/27

Symmetric matrix representation

Provably efficient algorithms for multilinear algebra 35/27

Blocked distributions of a symmetric matrix

Provably efficient algorithms for multilinear algebra 36/27

Cyclic distribution of a symmetric matrix

Provably efficient algorithms for multilinear algebra 37/27

Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

τ abij = tabij +
1

2
Pa
bP

i
j t

a
i t

b
j ,

F̃m
e = f me +

∑
fn

vmn
ef t fn ,

F̃ a
e = (1− δae)f ae −

∑
m

F̃m
e tam −

1

2

∑
mnf

vmn
ef tafmn +

∑
fn

vanef t
f
n ,

F̃m
i = (1− δmi)f

m
i +

∑
e

F̃m
e tei +

1

2

∑
nef

vmn
ef tefin +

∑
fn

vmn
if t fn ,

Provably efficient algorithms for multilinear algebra 38/27

Our CCSD factorization

W̃mn
ei = vmn

ei +
∑
f

vmn
ef t fi ,

W̃mn
ij = vmn

ij + P i
j

∑
e

vmn
ie tej +

1

2

∑
ef

vmn
ef τ

ef
ij ,

W̃ am
ie = v am

ie −
∑
n

W̃mn
ei tan +

∑
f

vma
ef t fi +

1

2

∑
nf

vmn
ef tafin ,

W̃ am
ij = v am

ij + P i
j

∑
e

v am
ie tej +

1

2

∑
ef

v am
ef τ

ef
ij ,

zai = f ai −
∑
m

F̃m
i tam +

∑
e

f ae t
e
i +

∑
em

vma
ei tem +

∑
em

v ae
im F̃

m
e +

1

2

∑
efm

v am
ef τ

ef
im

− 1

2

∑
emn

W̃mn
ei teamn,

zabij = v ab
ij + P i

j

∑
e

v ab
ie tej + Pa

bP
i
j

∑
me

W̃ am
ie tebmj − Pa

b

∑
m

W̃ am
ij tbm

+ Pa
b

∑
e

F̃ a
e t

eb
ij − P i

j

∑
m

F̃m
i tabmj +

1

2

∑
ef

v ab
ef τ

ef
ij +

1

2

∑
mn

W̃mn
ij τ abmn,

Provably efficient algorithms for multilinear algebra 39/27

Stability of symmetry preserving algorithms

Provably efficient algorithms for multilinear algebra 40/27

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000
orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
v -orbitals, o-electrons

kernel % of time complexity architectural bounds

DGEMM 45% O(v4o2/p) flops/mem bandwidth

broadcasts 20% O(v4o2/p
√
M) multicast bandwidth

prefix sum 10% O(p) allreduce bandwidth

data packing 7% O(v2o2/p) integer ops

all-to-all-v 7% O(v2o2/p) bisection bandwidth

tensor folding 4% O(v2o2/p) memory bandwidth

Provably efficient algorithms for multilinear algebra 41/27

Algebraic shortest path computations

All-pairs shortest-paths (APSP):

distance matrix is the closure of A,

A∗ = I ⊕ A⊕ A2 ⊕ . . .An

Floyd–Warshall = Gauss–Jordan elimination ≈ Gaussian elimination

O(n3) cost, but contains length n log n dependency path1

path doubling: log n steps, O(n3 log n) cost:

B = I ⊕ A, B2k = Bk ⊗ Bk , Bn = A∗

sparse path doubling2:

let C be subset of Bk corresponding to paths containing exactly k edges,

B2k = Bk ⊕ (C ⊗ Bk)

O(n3) cost, dependency paths length O(log2 n)
1

S., Buluc, Demmel, IPDPS, 2013
2

Tiskin, Springer LNCS, 2001

Provably efficient algorithms for multilinear algebra 42/27

Coupled cluster methods

Coupled cluster provides a systematically improvable approximation to the
manybody time-independent Schrödinger equation H|Ψ〉 = E |Ψ〉

the Hamiltonian has one- and two- electron components H = F + V

Hartree-Fock (SCF) computes mean-field Hamiltonian: F , V

Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) consider
transitions of (doubles, triples, and quadruples) of electrons to
unoccupied orbitals, encoded by tensor operator,
T = T1 + T2 + T3 + T4

they use an exponential ansatz for the wavefunction, Ψ = eTφ
where φ is a Slater determinant

expanding 0 = 〈φ′|H|Ψ〉 yields nonlinear equations for {Ti} in F ,V

0 = V ab
ij + P(a, b)

∑
e

T ae
ij F b

e −
1

2
P(i , j)

∑
mnef

T ab
imVmn

ef T ef
jn + . . .

where P is an antisymmetrization operator

Provably efficient algorithms for multilinear algebra 43/27

Symmetry preserving algorithms

By exploiting symmetry, reduce multiplies (but increase adds)1

rank-2 vector outer product

Cij = aibj + ajbi = (ai + aj)(bi + bj)− aibi − ajbj

squaring a symmetric matrix A (or AB + BA)

Cij =
∑
k

AikAkj =
∑
k

(Aik + Akj + Aij)
2 − . . .

for symmetrized contraction of symmetric order s + v and v + t tensors

(s + t + v)!

s!t!v !
fewer multiplies

e.g. cases above are

s = 1, t = 1, v = 0→ reduction by 2X
s = 1, t = 1, v = 1→ reduction by 6X

1
S., Demmel; Technical Report, ETH Zurich, 2015.

Provably efficient algorithms for multilinear algebra 44/27

Applications of symmetry preserving algorithms

Extensions and applications:

algorithms generalize to antisymmetric and Hermitian tensors

cost reductions in partially-symmetric coupled cluster contractions:
2X-9X for select contractions, 1.3X-2.1X for methods

for Hermitian tensors, multiplies cost 3X more than adds

(2/3)n3 bilinear rank for squaring a nonsymmetric matrix

decompose symmetric contractions into smaller symmetric contractions

Further directions:

high performance implementation

symmetry in tensor equations (e.g. Cholesky factors)

generalization to other group actions

relationships to fast matrix multiplication and structured matrices

Provably efficient algorithms for multilinear algebra 45/27

Communication cost of symmetry preserving algorithms

For contraction of order s + v tensor with order v + t tensor1

symmetry preserving algorithm requires (s+v+t)!
s!v !t! fewer multiplies

matrix-vector-like algorithms (min(s, v , t) = 0)

vertical communication dominated by largest tensor
horizontal communication asymptotically greater if only unique elements
are stored and s 6= v 6= t

matrix-matrix-like algorithms (min(s, v , t) > 0)

vertical and horizontal communication costs asymptotically greater for
symmetry preserving algorithm when s 6= v 6= t

further work: bounds for nested and iterative bilinear algorithms

1
S., Hoefler, Demmel; Technical Report, ETH Zurich, 2015.

Provably efficient algorithms for multilinear algebra 46/27

	Communication-avoiding parallel algorithms
	Sparse and discrete tensor computations
	Massively-parallel electronic structure calculations
	Symmetry-preserving tensor algorithms
	Conclusion

