Provably efficient algorithms for multilinear algebra

Edgar Solomonik

Department of Computer Science ETH Zurich

University of California, Davis

March 28, 2016

Outline and highlights

- Communication-optimal algorithms for linear solvers
 - algorithms with $p^{1/6}$ less communication on p processors for LU, QR, eigs
 - topology-aware implementations: 12X speed-up for MM, 2X for LU
 - novel lower bounds on communication and synchronization
- Tensor (multidimensional matrix) computations
 - Cyclops Tensor Framework (CTF): first distributed-memory tensor contraction framework
 - sparse multidimensional arrays, arbitrary types, semirings
- Massively-parallel electronic structure calculations
 - codes using CTF for wavefunction methods: Aquarius, QChem, VASP, Psi4
 - ullet coupled cluster faster than NWChem by > 10X, nearly 1 petaflop/s
- Preserving symmetry in tensor contractions
 - factor of $\omega!$ fewer multiplications for symmetric contractions of cost n^{ω}
 - up to 9X speed-up for partially-symmetric contractions in coupled cluster

Cost model for parallel algorithms

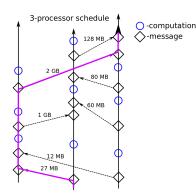
Algorithms should minimize communication, not just computation

- data movement and synchronization cost more energy than flops
- two types of data movement:
 - vertical (intranode memory–cache)
 - horizontal (internode network transfers)
- synchronization: number of messages, latency

Critical path costs

Given a schedule consider the following costs, accumulated along chains of tasks (as in $\alpha - \beta$, BSP, and LogGP models):

- F computation cost
- Q vertical communication cost
- W horizontal communication cost
- S synchronization cost



-message

Communication lower bounds: previous work

Multiplication of $n \times n$ matrices

horizontal communication lower bound¹

$$W_{\mathsf{MM}} = \Omega\left(\frac{n^2}{p^{2/3}}\right)$$

memory-dependent horizontal communication lower bound²

$$W_{\mathsf{MM}} = \Omega\left(\frac{n^3}{p\sqrt{M}}\right)$$

• with $M = cn^2/p$ memory, hope to obtain communication cost

$$W = O(n^2/\sqrt{cp})$$

ullet libraries like ScaLAPACK, Elemental optimal only for c=1

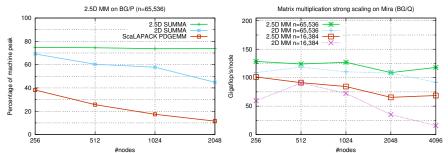
Aggarwal, Chandra, Snir, TCS, 1990

²Irony, Toledo, Tiskin, JPDC, 2004

Communication-efficient matrix multiplication

Communication-avoiding algorithms for matrix multiplication have been studied extensively 1

They continue to be attractive on modern architectures²



12X speed-up, 95% reduction in comm. for $n=8\mathrm{K}$ on 16K nodes of BG/P

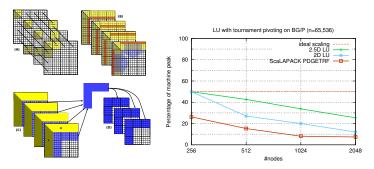
Berntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar, IBM, 1995; McColl, Tiskin, Algorithmica, 1999; ...

 $^{^2}$ S., Bhatele, Demmel, SC, 2011

Communication-efficient LU factorization

For any $c \in [1, p^{1/3}]$, use cn^2/p memory per processor and obtain

$$W_{\rm LU} = O(n^2/\sqrt{cp})$$



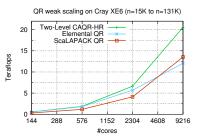
- LU with pairwise pivoting¹ extended to tournament pivoting²
- first implementation of a communication-optimal LU algorithm²

¹Tiskin, FGCS, 2007

²S., Demmel, Euro-Par, 2011

Communication-efficient QR factorization

- $W_{\rm QR} = O(n^2/\sqrt{cp})$ using Givens rotations¹
- Householder form can be reconstructed quickly from TSQR² $Q = I YTY^{T} \Rightarrow LU(I Q) \rightarrow (Y, TY^{T})$
- enables communication-optimal Householder QR³
- Householder aggregation yields performance improvements



Further directions: 2.5D QR implementation, lower bounds, pivoting

¹Tiskin, FGCS, 2007

²Ballard, Demmel, Grigori, Jacquelin, Nguyen, S., IPDPS, 2014

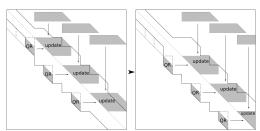
³S., UCB, 2014

Communication-efficient eigenvalue computation

For the dense symmetric matrix eigenvalue problem¹

$$W_{\mathsf{SE}} = O(n^2/\sqrt{cp})$$

- above costs obtained by left-looking algorithm with Householder aggregation, however, with increased vertical communication
- successive band reduction minimizes both vertical and horizontal communication costs



Further directions: implementations (ongoing), eigenvector computation, SVD

¹ S., UCB, 2014. S., Hoefler, Demmel, in preparation

Synchronization cost lower bounds

Unlike matrix multiplication, dense matrix factorizations have polynomial depth (contain a long dependency path)

Given $M = cn^2/p$ memory:

• matrix multiplication synchronization cost bound¹

$$S_{\mathsf{MM}} = \Theta\left(\sqrt{p/c^3} + \log p\right)$$

algorithms for Cholesky, LU, QR, SVD do not attain this bound

$$S_{\text{LU}} = \Theta\left(\sqrt{cp}\right)$$

ullet need smaller block size for lower communication cost o higher synchronization cost

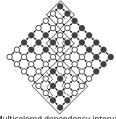
Ballard, Demmel, Holtz, Schwartz, SIAM JMAA, 2011

Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the $n \times n$ diamond DAG,¹

$$F \cdot S = \Omega(n^2)$$





Monochrome dependency intervals

Multicolored dependency intervals

We generalize this idea²

- additionally consider horizontal communication
- allow arbitrary (polynomial or exponential) interval expansion

Papadimitriou, Ullman, SIAM JC, 1987

²S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms, represented via dependency hypergraphs:¹

For triangular solve with an $n \times n$ matrix,

$$F_{\text{TRSV}} \cdot S_{\text{TRSV}} = \Omega \left(n^2 \right)$$

For Cholesky of an $n \times n$ matrix,

$$F_{\mathsf{CHOL}} \cdot S_{\mathsf{CHOL}}^2 = \Omega\left(n^3\right) \qquad W_{\mathsf{CHOL}} \cdot S_{\mathsf{CHOL}} = \Omega\left(n^2\right)$$

Therefore, the costs

$$W_{\text{CHOL}} = \Theta(n^2/\sqrt{cp}), \quad S_{\text{CHOL}} = \Theta(\sqrt{cp}),$$

are optimal

¹S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Synchronization tradeoffs in stencils

Our lower bound analysis extends to sparse iterative methods:¹ For computing s applications of a $(2m+1)^d$ -point stencil,

$$F_{\mathsf{St}} \cdot S^d_{\mathsf{St}} = \Omega\left(m^{2d} \cdot s^{d+1}\right), \qquad W_{\mathsf{St}} \cdot S^{d-1}_{\mathsf{St}} = \Omega\left(m^d \cdot s^d\right)$$

- time-blocking lowers synchronization and vertical communication costs, but raises horizontal communication
- we suggest alternative approach that minimizes vertical and horizontal communication, but not synchronization
- further directions:
 - implementation of proposed algorithm
 - lower bounds for graph traversals

¹S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Bridging the gap between algorithms and applications

How can we package communication-avoiding algorithms for distributed-memory programs?

- challenges: complicated data layouts (multidimensional processor grids, cyclic distributions), global coordination, large tuning space
- need high-level abstractions, algebraic language, interoperability
- solution: library for algebraic multidimensional array computations
 - Cyclops Tensor Framework: C++ library, MPI+OpenMP+BLAS(+CUDA) https://github/com/solomonik/ctf
 - first lets consider matrices/vectors, then higher-order tensors

A library for tensor computations

Cyclops Tensor Framework¹

- implicit for loops based on index notation (Einstein summation)
- matrix sums, multiplication, Hadamard product (tensor contractions)
- distributed symmetric-packed/sparse storage via cyclic layout

¹S., Hammond, Demmel, UCB, 2011. S., Matthews, Hammond, Demmel, IPDPS, 2013.

A library for tensor computations

Cyclops Tensor Framework

- implicit for loops based on index notation (Einstein summation)
- matrix sums, multiplication, Hadamard product (tensor contractions)
- distributed symmetric-packed/sparse storage via cyclic layout

Jacobi iteration (solves Ax = b iteratively) example code snippet

A library for tensor computations

Cyclops Tensor Framework

- implicit for loops based on index notation (Einstein summation)
- matrix sums, multiplication, Hadamard product (tensor contractions)
- distributed symmetric-packed/sparse storage via cyclic layout

Jacobi iteration (solves Ax = b iteratively) example code snippet

```
Vector<> Jacobi(Matrix<> A, Vector<> b, int n){
   Matrix<> R(A);
   R["ii"] = 0.0;
   Vector<> x(n), d(n), r(n);
   Function<> inv([](double & d){ return 1./d; });
   d["i"] = inv(A["ii"]); // set d to inverse of diagonal of A
   do {
      x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
      r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual
   } while (r.norm2() > 1.E-6); // check for convergence
   return x;
}
```

Algebraic shortest path computations

Tropical (geodetic) semiring

- additive (idempotent) operator: $a \oplus b \coloneqq \min(a, b)$, identity: ∞
- multiplicative operator: $a \otimes b := a + b$, identity: 0
- matrix multiplication defined accordingly,

$$C = A \otimes B := \forall i, j, C_{ij} = \min_{k} (A_{ik} + B_{kj})$$

Bellman-Ford algorithm (SSSP) for $n \times n$ adjacency matrix A:

- initialize $v^{(1)} = (0, \infty, \infty, \ldots)$
- 2 compute $v^{(n)}$ via recurrence

$$v^{(i+1)} = v^{(i)} \oplus (v^{(i)} \otimes A)$$

Can also express all-pairs shortest-paths (APSP) using tropical semiring

With other semirings/element-wise functions can formulate any graph algorithm that updates adjacent edge \leftrightarrow vertex labels

Bellman-Ford Algorithm using CTF

CTF code for n node single-source shortest-paths (SSSP) calculation:

```
World w(MPI_COMM_WORLD);
Semiring < int > s(INT_MAX/2,
                [](int a, int b){ return min(a,b); },
                MPI MIN.
                0.
                [](int a, int b){ return a+b; });
Matrix<int> A(n,n,SP,w,s); // Adjacency matrix
Vector<int> v(n,w,s); // Distances from starting vertex
... // Initialize A and v
//Bellman-Ford SSSP algorithm
for (int t=0; t< n; t++){
  v["i"] += v["j"]*A["ji"];
```

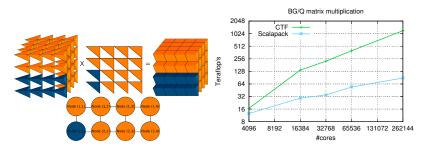
Betweenness centrality

Betweenness centrality code snippet, for k of n nodes void btwn_central(Matrix<int> A, Matrix<path> P, int n, int k){ Monoid < path > mon(..., [](path a, path b){ if (a.w<b.w) return a; else if (b.w<a.w) return b; else return path(a.w, a.m+b.m); }, ...); Matrix < path > Q(n,k,mon); // shortest path matrix Q["ij"] = P["ij"];Function<int,path> append([](int w, path p){ return path(w+p.w, p.m); };); for (int i=0; i<n; i++) O["ij"] = append(A["ik"],Q["kj"]);

Performance of CTF for dense computations

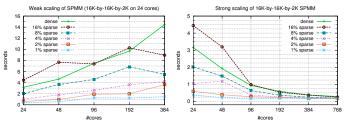
CTF is highly tuned for massively-parallel machines

- virtualized multidimensional processor grids
- topology-aware mapping and collective communication
- performance-model-driven algorithm selection done at runtime
- optimized redistribution kernels for matrix/tensor transposition

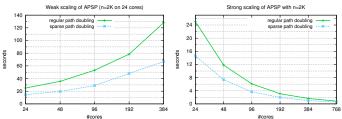


Performance of CTF for sparse computations

multiplication of a sparse matrix and a dense matrix¹



All-pairs shortest-paths based on path doubling with sparsification¹



¹S., Hoefler, Demmel, arXiv, 2015

Tensor computations as programming abstractions

Tensors (scalars, vectors, matrices, etc.) are convenient abstractions for multidimensional data

- one type of object for any homogeneous dataset
- enable expression of symmetries, sparsity

Matrix computations ⊂ tensor computations

- = often reduce to or employ matrix algorithms
 - can leverage high performance matrix libraries
- + high-order tensors can 'act' as many matrix unfoldings
- + symmetries lower memory footprint and cost
- + tensor factorizations (CP, Tucker, tensor train, ...)

Applications of high-order tensor representations

Numerical solution to differential equations

- higher-order Taylor series expansion terms
- nonlinear terms and differential operators

Computer vision and graphics

- ullet 2D image \otimes angle \otimes time
- classification, compression (tensor factorizations, sparsity)

Machine learning

- convolutional neural networks, high-order statistics
- reduced-order models, recommendation systems (tensor factorizations)

Graph computations

- hypergraphs, time-dependent graphs
- clustering/partitioning/path-finding (eigenvector computations)

Divide-and-conquer algorithms representable by tensor folding

bitonic sort, FFT, scans

Tensors for computational chemistry/physics

Manybody Schrödinger equation

"curse of dimensionality" – exponential state space

Condensed matter physics

- tensor network models (e.g. DMRG), tensor per lattice site
- highly symmetric multilinear tensor representation
- ullet exponential state space localized o factorized tensor form

Quantum chemistry (electronic structure calculations)

- models of molecular structure and chemical reactions
- methods for calculating electronic correlation:
 - "Post Hartree-Fock": configuration interaction, coupled cluster, Møller-Plesset perturbation theory
- multi-electron states as tensors,
 e.g. electron ⊗ electron ⊗ orbital ⊗ orbital
- nonlinear equations of partially (anti)symmetric tensors
- ullet interactions diminish with distance o sparsity, low rank

Coupled cluster using CTF

Extracted from Aquarius (Devin Matthews' code, https://github.com/devinamatthews/aquarius)

```
FMI["mi"] += 0.5*WMNEF["mnef"]*T2["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T2["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T2["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T2["afin"];

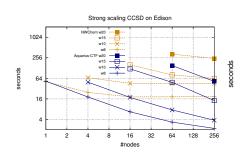
Z2["abij"] = WMNEF["ijab"];
Z2["abij"] += FAE["af"]*T2["fbij"];
Z2["abij"] -= FMI["ni"]*T2["abnj"];
Z2["abij"] += 0.5*WABEF["abef"]*T2["efij"];
Z2["abij"] += 0.5*WMNIJ["mnij"]*T2["abmn"];
Z2["abij"] -= WAMEI["amei"]*T2["ebmj"];
```

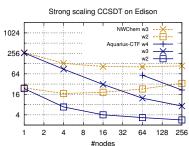
CTF is used within Aquarius, QChem, VASP, and Psi4

Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum chemistry method suite

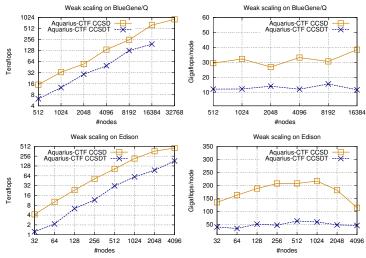
- provides Coupled Cluster methods: CCSD and CCSDT
- derives equations via Tensor Contraction Engine (TCE)
- generates contractions as blocked loops leveraging Global Arrays





Coupled cluster on IBM BlueGene/Q and Cray XC30

CCSD up to 55 (50) water molecules with cc-pVDZ CCSDT up to 10 water molecules with $cc-pVDZ^1$



¹S., Matthews, Hammond, Demmel, JPDC, 2014

Symmetry preserving algorithms

Tensor symmetry (e.g. $A_{ij} = A_{ji}$) reduces memory and cost¹

- for order *d* tensor, *d*! less memory
- matrix-vector multiplication $(A_{ij} = A_{ji})^1$

$$c_i = \sum_j A_{ij}b_j = \sum_j A_{ij}(b_i + b_j) - \left(\sum_j A_{ij}\right)b_i$$

- $A_{ij}b_j \neq A_{ji}b_i$ but $A_{ij}(b_i + b_j) = A_{ji}(b_j + b_i) \rightarrow (1/2)n^2$ multiplies
- ullet for symmetrized contraction of symmetric order s+v and v+t tensors

$$\frac{(s+t+v)!}{s!t!v!}$$
 fewer multiplies

- numerically stable (by forward error bounds and in experiments)
- lower overall cost for partially symmetric contractions
- up to 9X for select contractions, 1.3X/2.1X for CCSD/CCSDT
- Hermitian BLAS/LAPACK operations with 25% less cost
- ongoing: relationship to fast structured matrix multiplication

¹S., Demmel; Technical Report, ETH Zurich, 2015.

Impact and future work

Many further directions (theory, implementation, application) with much overlap (tensor equations, factorizations, symmetries)

- Cyclops Tensor Framework
 - \checkmark already widely-adapted in quantum chemistry, many requests for features
 - integrate matrix/tensor factorizations
 - optimize across multiple tensor operations (scheduling, layout persistence)
 - engage high-impact application domains
 - tensor networks for condensed matter-physics
 - convolutional neural networks
 - recommender systems (tensor completion)
- communication-avoiding algorithms
 - √ existing fast implementations already used by applications (e.g. QBall)
 - find efficient methods of searching larger tuning spaces
 - algorithms for computing eigenvectors, SVD, tensor factorizations
 - analyze (randomized) algorithms for sparse matrix factorization
- symmetry in tensor computations
 - ullet cost improvements \checkmark \to library implementations \to application speed-ups
 - study symmetries in tensor equations and factorizations
 - consider other symmetries and relation to fast matrix multiplication

Backup slides

Lower bounds for symmetry preserving algorithms

Bilinear algorithms¹ enable robust communication lower bounds

• a bilinear algorithm is defined by matrices $F^{(A)}$, $F^{(B)}$, $F^{(C)}$,

$$c = F^{(C)}[(F^{(A)\mathsf{T}}a) \circ (F^{(B)\mathsf{T}}b)]$$

where o is the Hadamard (pointwise) product

communication lower bounds derived based on matrix rank²

¹Pan, Springer, 1984

²S., Hoefler, Demmel, in preparation

Nesting of bilinear algorithms

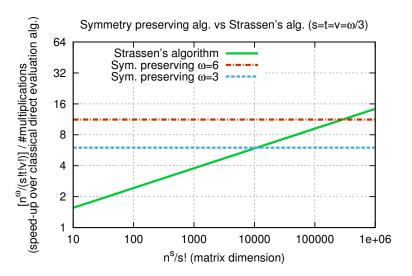
Given two bilinear algorithms:

$$\Lambda_1 = (F_1^{(A)}, F_1^{(B)}, F_1^{(C)})$$
$$\Lambda_2 = (F_2^{(A)}, F_2^{(B)}, F_2^{(C)})$$

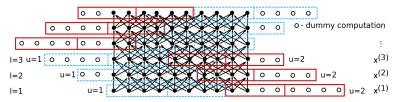
We can nest them by computing their tensor product

$$\begin{split} & \Lambda_1 \otimes \Lambda_2 \coloneqq & (\textbf{F}_1^{(\textbf{A})} \otimes \textbf{F}_2^{(\textbf{A})}, \textbf{F}_1^{(\textbf{B})} \otimes \textbf{F}_2^{(\textbf{B})}, \textbf{F}_1^{(\textbf{C})} \otimes \textbf{F}_2^{(\textbf{C})}) \\ & \text{rank}(\Lambda_1 \otimes \Lambda_2) = & \text{rank}(\Lambda_1) \cdot \text{rank}(\Lambda_2) \end{split}$$

Symmetry preserving algorithm vs Strassen's algorithm



Block-cyclic algorithm for s-step methods

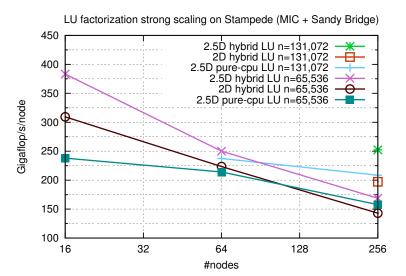


For s-steps of a $(2m+1)^d$ -point stencil with block-size of $H^{1/d}/m$,

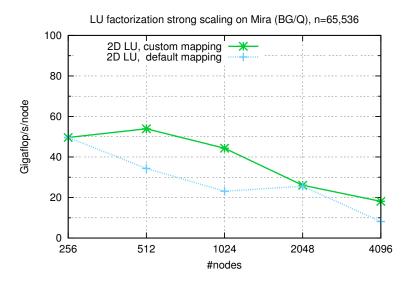
$$W_{
m Kr} = O\left(rac{msn^d}{H^{1/d}p}
ight) \quad S_{
m Kr} = O(sn^d/(pH)) \quad Q_{
m Kr} = O\left(rac{msn^d}{H^{1/d}p}
ight)$$

which are good when $H=\Theta(n^d/p)$, so the algorithm is useful when the cache size is a bit smaller than n^d/p

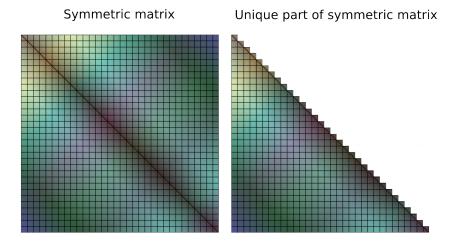
2.5D LU on MIC



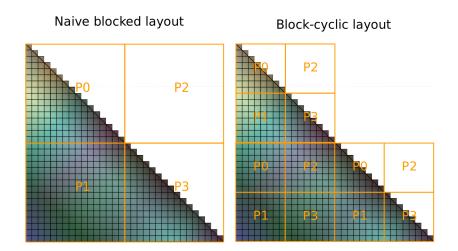
Topology-aware mapping on BG/Q



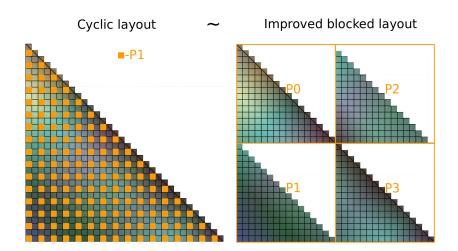
Symmetric matrix representation



Blocked distributions of a symmetric matrix



Cyclic distribution of a symmetric matrix



Our CCSD factorization

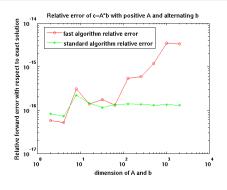
Credit to John F. Stanton and Jurgen Gauss

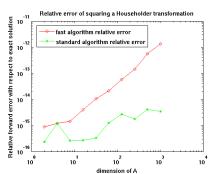
$$\begin{split} \tau^{ab}_{ij} &= t^{ab}_{ij} + \frac{1}{2} P^{a}_{b} P^{i}_{j} t^{a}_{i} t^{b}_{j}, \\ \tilde{F}^{m}_{e} &= f^{m}_{e} + \sum_{fn} v^{mn}_{ef} t^{f}_{n}, \\ \tilde{F}^{a}_{e} &= (1 - \delta_{ae}) f^{a}_{e} - \sum_{m} \tilde{F}^{m}_{e} t^{a}_{m} - \frac{1}{2} \sum_{mnf} v^{mn}_{ef} t^{af}_{mn} + \sum_{fn} v^{an}_{ef} t^{f}_{n}, \\ \tilde{F}^{m}_{i} &= (1 - \delta_{mi}) f^{m}_{i} + \sum_{e} \tilde{F}^{m}_{e} t^{e}_{i} + \frac{1}{2} \sum_{nef} v^{mn}_{ef} t^{ef}_{in} + \sum_{fn} v^{mn}_{if} t^{f}_{n}, \end{split}$$

Our CCSD factorization

$$\begin{split} \tilde{W}_{ei}^{mn} &= v_{ei}^{mn} + \sum_{f} v_{ef}^{mn} t_{i}^{f}, \\ \tilde{W}_{ij}^{mn} &= v_{ij}^{mn} + P_{j}^{i} \sum_{e} v_{ie}^{mn} t_{j}^{e} + \frac{1}{2} \sum_{ef} v_{ef}^{mn} \tau_{ij}^{ef}, \\ \tilde{W}_{ie}^{am} &= v_{ie}^{am} - \sum_{n} \tilde{W}_{ei}^{mn} t_{n}^{a} + \sum_{f} v_{ef}^{ma} t_{i}^{f} + \frac{1}{2} \sum_{nf} v_{ef}^{mn} t_{in}^{af}, \\ \tilde{W}_{ij}^{am} &= v_{ij}^{am} + P_{j}^{i} \sum_{e} v_{ie}^{am} t_{j}^{e} + \frac{1}{2} \sum_{ef} v_{ef}^{am} \tau_{ij}^{ef}, \\ z_{i}^{a} &= f_{i}^{a} - \sum_{m} \tilde{F}_{i}^{m} t_{m}^{a} + \sum_{e} f_{e}^{a} t_{i}^{e} + \sum_{em} v_{ei}^{ma} t_{m}^{e} + \sum_{em} v_{im}^{ae} \tilde{F}_{e}^{m} + \frac{1}{2} \sum_{efm} v_{ef}^{am} \tau_{im}^{ef} \\ &- \frac{1}{2} \sum_{emn} \tilde{W}_{ei}^{mn} t_{mn}^{ea}, \\ z_{ij}^{ab} &= v_{ij}^{ab} + P_{j}^{i} \sum_{e} v_{ie}^{ab} t_{j}^{e} + P_{b}^{a} P_{j}^{i} \sum_{me} \tilde{W}_{ie}^{am} t_{mj}^{eb} - P_{b}^{a} \sum_{m} \tilde{W}_{ij}^{am} t_{m}^{ab} \\ &+ P_{b}^{a} \sum_{n} \tilde{F}_{e}^{a} t_{ij}^{eb} - P_{j}^{i} \sum_{m} \tilde{F}_{i}^{m} t_{mj}^{ab} + \frac{1}{2} \sum_{f} v_{ef}^{ab} \tau_{ij}^{ef} + \frac{1}{2} \sum_{m} \tilde{W}_{ij}^{mn} \tau_{mn}^{ab}, \end{split}$$

Stability of symmetry preserving algorithms





Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000 orbitals on 4096 nodes of Mira

4 processes per node, 16 threads per process

Total time: 18 mins *v*-orbitals, *o*-electrons

kernel	% of time	complexity	architectural bounds
DGEMM	45%	$O(v^4o^2/p)$	flops/mem bandwidth
broadcasts	20%	$O(v^4o^2/p\sqrt{M})$	multicast bandwidth
prefix sum	10%	O(p)	allreduce bandwidth
data packing	7%	$O(v^2o^2/p)$	integer ops
all-to-all-v	7%	$O(v^2o^2/p)$	bisection bandwidth
tensor folding	4%	$O(v^2o^2/p)$	memory bandwidth

Algebraic shortest path computations

All-pairs shortest-paths (APSP):

• distance matrix is the closure of A,

$$A^* = I \oplus A \oplus A^2 \oplus \dots A^n$$

- ullet Floyd–Warshall = Gauss–Jordan elimination pprox Gaussian elimination
 - $O(n^3)$ cost, but contains length $n \log n$ dependency path¹
- path doubling: $\log n$ steps, $O(n^3 \log n)$ cost:

$$B = I \oplus A$$
, $B^{2k} = B^k \otimes B^k$, $B^n = A^*$

- sparse path doubling²:
 - let C be subset of B^k corresponding to paths containing exactly k edges,

$$B^{2k}=B^k\oplus (C\otimes B^k)$$

• $O(n^3)$ cost, dependency paths length $O(\log^2 n)$

¹S., Buluc, Demmel, IPDPS, 2013

²Tiskin, Springer LNCS, 2001

Coupled cluster methods

Coupled cluster provides a systematically improvable approximation to the manybody time-independent Schrödinger equation $H|\Psi\rangle=E|\Psi\rangle$

- ullet the Hamiltonian has one- and two- electron components H=F+V
- Hartree-Fock (SCF) computes mean-field Hamiltonian: F, V
- Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) consider transitions of (doubles, triples, and quadruples) of electrons to unoccupied orbitals, encoded by tensor operator,

$$T = T_1 + T_2 + T_3 + T_4$$

- they use an exponential ansatz for the wavefunction, $\Psi = e^T \phi$ where ϕ is a Slater determinant
- expanding $0 = \langle \phi' | H | \Psi \rangle$ yields nonlinear equations for $\{T_i\}$ in F, V

$$0 = V_{ij}^{ab} + \mathcal{P}(a,b) \sum_{e} T_{ij}^{ae} F_{e}^{b} - \frac{1}{2} \mathcal{P}(i,j) \sum_{mnef} T_{im}^{ab} V_{ef}^{mn} T_{jn}^{ef} + \dots$$

where ${\cal P}$ is an antisymmetrization operator

Symmetry preserving algorithms

By exploiting symmetry, reduce multiplies (but increase adds)¹

rank-2 vector outer product

$$C_{ij} = a_i b_j + a_j b_i = (a_i + a_j)(b_i + b_j) - a_i b_i - a_j b_j$$

• squaring a symmetric matrix A (or AB + BA)

$$C_{ij} = \sum_{k} A_{ik} A_{kj} = \sum_{k} (A_{ik} + A_{kj} + A_{ij})^2 - \dots$$

ullet for symmetrized contraction of symmetric order s+v and v+t tensors

$$\frac{(s+t+v)!}{s!t!v!}$$
 fewer multiplies

e.g. cases above are

- $s = 1, t = 1, v = 0 \rightarrow \text{reduction by } 2X$
- $s = 1, t = 1, v = 1 \rightarrow \text{reduction by } 6X$

¹S., Demmel; Technical Report, ETH Zurich, 2015.

Applications of symmetry preserving algorithms

Extensions and applications:

- algorithms generalize to antisymmetric and Hermitian tensors
- cost reductions in partially-symmetric coupled cluster contractions: 2X-9X for select contractions, 1.3X-2.1X for methods
- for Hermitian tensors, multiplies cost 3X more than adds
- $(2/3)n^3$ bilinear rank for squaring a *nonsymmetric* matrix
- decompose symmetric contractions into smaller symmetric contractions

Further directions:

- high performance implementation
- symmetry in tensor equations (e.g. Cholesky factors)
- generalization to other group actions
- relationships to fast matrix multiplication and structured matrices

Communication cost of symmetry preserving algorithms

For contraction of order s + v tensor with order v + t tensor¹

- symmetry preserving algorithm requires $\frac{(s+v+t)!}{s!v!t!}$ fewer multiplies
- ullet matrix-vector-like algorithms (min(s, v, t) = 0)
 - vertical communication dominated by largest tensor
 - horizontal communication asymptotically greater if only unique elements are stored and $s \neq v \neq t$
- matrix-matrix-like algorithms $(\min(s, v, t) > 0)$
 - vertical and horizontal communication costs asymptotically greater for symmetry preserving algorithm when $s \neq v \neq t$
- further work: bounds for nested and iterative bilinear algorithms

¹S., Hoefler, Demmel; Technical Report, ETH Zurich, 2015.