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Outline and highlights

© Communication-optimal algorithms for linear solvers

o algorithms with p'/® less communication on p processors for LU, QR, eigs
e topology-aware implementations: 12X speed-up for MM, 2X for LU
e novel lower bounds on communication and synchronization

@ Tensor (multidimensional matrix) computations

e Cyclops Tensor Framework (CTF): first distributed-memory tensor
contraction framework

e sparse multidimensional arrays, arbitrary types, semirings
© Massively-parallel electronic structure calculations

o codes using CTF for wavefunction methods: Aquarius, QChem, VASP, Psi4
o coupled cluster faster than NWChem by > 10X, nearly 1 petaflop/s

@ Preserving symmetry in tensor contractions

o factor of w! fewer multiplications for symmetric contractions of cost n“
e up to 9X speed-up for partially-symmetric contractions in coupled cluster
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Cost model for parallel algorithms

Algorithms should minimize communication, not just computation

@ data movement and synchronization cost more energy than flops
@ two types of data movement:

e vertical (intranode memory—cache)
e horizontal (internode network transfers)

@ synchronization: number of messages, latency
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Critical path costs

Given a schedule consider the following costs, accumulated along chains of
tasks (as in a — /3, BSP, and LogGP models):

@ F — computation cost

3-processor schedule o ot
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@ (Q — vertical communication cost o) usn@,f& O*message
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Communication lower bounds: previous work

Multiplication of n x n matrices

@ horizontal communication lower bound?

Q™
Wum = < >
p2/3

@ memory-dependent horizontal communication lower bound?

- (%)

e with M = cn?/p memory, hope to obtain communication cost

W = O(r/\/ep)

@ libraries like ScaLAPACK, Elemental optimal only for c =1

1Aggarwa|, Chandra, Snir, TCS, 1990
2|rony, Toledo, Tiskin, JPDC, 2004
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Communication-efficient matrix multiplication

Communication-avoiding algorithms for matrix multiplication have been

studied extensively!

They continue to be attractive on modern architectures?

2.5D MM on BG/P (n=65,536)

Matrix multiplication strong scaling on Mira (BG/Q)
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12X speed-up, 95% reduction in comm. for
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n = 8K on 16K nodes of BG/P

1Berntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar, IBM, 1995;

McColl, Tiskin, Algorithmica, 1999; ...
25., Bhatele, Demmel, SC, 2011
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Communication-efficient LU factorization

For any c € [1, p*/3], use cn?/p memory per processor and obtain

Wiy = O(n*/+/cp)

LU with tournament pivoting on BG/P (n=65,536)
100 : :
ideal scaling ------
25D LU —+—
80 [ * “ScalLAPACK PDGETRF —&— |
0 [ wees oo e e e e e s s b e

Percentage of machine peak

0 I
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e LU with pairwise pivoting® extended to tournament pivoting?

e first implementation of a communication-optimal LU algorithm?

lTiskin, FGCS, 2007
25., Demmel, Euro-Par, 2011
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Communication-efficient QR factorization

@ Wqr = O(n?/,/cp) using Givens rotations?

@ Householder form can be reconstructed quickly from TSQR?
Q=1/-YTYT = LU(/ — Q) = (Y, TYT)

@ enables communication-optimal Householder QR3

@ Householder aggregation yields performance improvements

QR weak scaling on Cray XE6 (n=15K to n=131K)

20 [ Two-Level CAQR-HR —— | j
Elemental QR :
ScalAPACK GR —&— -

Teraflops

0 i L L
144 288 576 1152 2304 4608 9216
#cores

Further directions: 2.5D QR implementation, lower bounds, pivoting

1Tiskin, FGCS, 2007
2Ba||ard, Demmel, Grigori, Jacquelin, Nguyen, S., IPDPS, 2014
3S., UCB, 2014
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Communication-efficient eigenvalue computation

For the dense symmetric matrix eigenvalue problem!
Wse = O(n?/\/cp)

@ above costs obtained by left-looking algorithm with Householder aggregation,
however, with increased vertical communication

@ successive band reduction minimizes both vertical and horizontal
communication costs

R - updatel

Kate‘

Further directions: implementations (ongoing), eigenvector computation, SVD

15., UCB, 2014. S., Hoefler, Demmel, in preparation
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Synchronization cost lower bounds

Unlike matrix multiplication, dense matrix factorizations have polynomial
depth (contain a long dependency path)

Given M = cn?/p memory:

@ matrix multiplication synchronization cost bound?!

Svum = © ( p/c3 + |0gP>
@ algorithms for Cholesky, LU, QR, SVD do not attain this bound

S = © (Vep)

@ need smaller block size for lower communication cost — higher
synchronization cost

1Ba|lard, Demmel, Holtz, Schwartz, SIAM JMAA, 2011
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Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the n x n diamond DAG,?

F-S=Q(n)

Dependency chain P Monochrome dependency intervals ~ Multicolored dependency intervals
We generalize this idea?
@ additionally consider horizontal communication

@ allow arbitrary (polynomial or exponential) interval expansion

1Papadimitriou, Ullman, SIAM JC, 1987
25., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms,
represented via dependency hypergraphs:?

For triangular solve with an n X n matrix,
Frrsv - Strsv = Q (n%)
For Cholesky of an n x n matrix,
FeroL - SéroL = Q2 (n*) Wenol - Schol = Q (n?)
Therefore, the costs
WenoL = ©(n*/\/ep),  SchoL = ©(v/cp),

are optimal

]'S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Provably efficient algorithms for multilinear algebra 12/27



Synchronization tradeoffs in stencils

Our lower bound analysis extends to sparse iterative methods:?
For computing s applications of a (2m + l)d—point stencil,

Fst - Sgt =Q (mZd ‘ Sd+1> ’ We: - 55;1 =0 (md ' Sd)

@ time-blocking lowers synchronization and vertical communication costs,
but raises horizontal communication

@ we suggest alternative approach that minimizes vertical and horizontal
communication, but not synchronization

o further directions:

e implementation of proposed algorithm
o lower bounds for graph traversals

15., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Bridging the gap between algorithms and applications

How can we package communication-avoiding algorithms for
distributed-memory programs?

@ challenges: complicated data layouts (multidimensional processor grids,
cyclic distributions), global coordination, large tuning space

@ need high-level abstractions, algebraic language, interoperability

@ solution: library for algebraic multidimensional array computations

e Cyclops Tensor Framework: C++ library, MPI4+-OpenMP+BLAS(+CUDA)
https://github/com/solomonik/ctf

o first lets consider matrices/vectors, then higher-order tensors
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A library for tensor computations

Cyclops Tensor Framework?!
@ implicit for loops based on index notation (Einstein summation)
@ matrix sums, multiplication, Hadamard product (tensor contractions)

e distributed symmetric-packed/sparse storage via cyclic layout

15., Hammond, Demmel, UCB, 2011. S., Matthews, Hammond, Demmel, IPDPS, 2013
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A library for tensor computations

Cyclops Tensor Framework

@ implicit for loops based on index notation (Einstein summation)

@ matrix sums, multiplication, Hadamard product (tensor contractions)

e distributed symmetric-packed/sparse storage via cyclic layout
Jacobi iteration (solves Ax = b iteratively) example code snippet

Vector<> Jacobi(Matrix<> A, Vector<> b, int n){
// split A = R + diag(1./d)
do {
x["i"1 = d["i"I*x(b["i"1-RL["ij"1*x["3"1);
rf"i"] = bL"i"1-AL"ij"1*x["j"1; // compute residual
} while (r.norm2() > 1.E-6); // check for convergence

return x;
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A library for tensor computations

Cyclops Tensor Framework
@ implicit for loops based on index notation (Einstein summation)
@ matrix sums, multiplication, Hadamard product (tensor contractions)
e distributed symmetric-packed/sparse storage via cyclic layout

Jacobi iteration (solves Ax = b iteratively) example code snippet

Vector<> Jacobi(Matrix<> A, Vector<> b, int n){

Matrix<> R(A);
R["ii"] = 0.0;
Vector<> x(n), d(n), r(n);
Function<> inv([](double & d){ return 1./d; });
d["i"] = inv(AL"ii"1); // set d to inverse of diagonal of A
do {

x["i"] = d["i"1*(b["i"]1-RL["ij"1*x["j"1);

r["i"] = bL["i"]1-AL"ij"1*x["j"1; // compute residual
} while (r.norm2() > 1.E-6); // check for convergence
return x;
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Algebraic shortest path computations

Tropical (geodetic) semiring
@ additive (idempotent) operator: a @ b := min(a, b), identity: co
e multiplicative operator: a® b:=a+ b, identity: 0

@ matrix multiplication defined accordingly,

C=A®B = Vij C,J = mkin(A,-k—I—Bkj)

Bellman-Ford algorithm (SSSP) for n x n adjacency matrix A:
@ initialize v(t) = (0, 00, o0, .. )

@ compute v(" via recurrence

Can also express all-pairs shortest-paths (APSP) using tropical semiring

With other semirings/element-wise functions can formulate any graph
algorithm that updates adjacent edge <> vertex labels
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Bellman—Ford Algorithm using CTF

CTF code for n node single-source shortest-paths (SSSP) calculation:

World w(MPI_COMM_WORLD);
Semiring<int> s(INT_MAX/2,
[1(int a, int b){ return min(a,b); 3},
MPI_MIN,
0,
[1(int a, int b){ return a+b; });

Matrix<int> A(n,n,SP,w,s); // Adjacency matrix
Vector<int> v(n,w,s); // Distances from starting vertex

// Initialize A and v
//Bellman-Ford SSSP algorithm
for (int t=0; t<n; t++){

V["i"] += V["j"]*A["ji"];
}
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Betweenness centrality

Betweenness centrality code snippet, for k of n nodes

void btwn_central (Matrix<int> A, Matrix<path> P, int n, int k){
Monoid<path> mon(...,
[I(path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

}y "');

Matrix<path> Q(n,k,mon); // shortest path matrix
Q["ij"] = P["ij”];

Function<int,path> append([](int w, path p){
return path(w+p.w, p.m);
3 )

for (int i=0; i<n; i++)
Q["ij"] = append(A["ik"]’Q["kj"]);
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Performance of CTF for dense computations

CTF is highly tuned for massively-parallel machines

@ virtualized multidimensional processor grids

@ topology-aware mapping and collective communication

e performance-model-driven algorithm selection done at runtime

@ optimized redistribution kernels for matrix/tensor transposition

BG/Q matrix multiplication
2048

'CTF ——
1024 Scalapack

512
256 |-
M _ 56
128 |
64 [

Teraflop/s

s a a a a a
4096 8192 16384 32768 65536 131072 262144
#cores
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Performance of CTF for sparse computations

multiplication of a sparse matrix and a dense matrix!

16 T T T 5 T T T T
dense —+— dense —+—
14 - 16% sparse == 16% sparse -
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path doubling with sparsification®

Strong scaling of APSP with n=2K
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15., Hoefler, Demmel, arXiv, 2015
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Tensor computations as programming abstractions

Tensors (scalars, vectors, matrices, etc.) are convenient abstractions for
multidimensional data

@ one type of object for any homogeneous dataset
@ enable expression of symmetries, sparsity

Matrix computations C tensor computations
@ = often reduce to or employ matrix algorithms
e can leverage high performance matrix libraries

@ + high-order tensors can ‘act’ as many matrix unfoldings
@ + symmetries lower memory footprint and cost

@ + tensor factorizations (CP, Tucker, tensor train, ...)
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Applications of high-order tensor representations

Numerical solution to differential equations

@ higher-order Taylor series expansion terms

@ nonlinear terms and differential operators
Computer vision and graphics

e 2D image ® angle ® time

e classification, compression (tensor factorizations, sparsity)
Machine learning

@ convolutional neural networks, high-order statistics

@ reduced-order models, recommendation systems (tensor factorizations)
Graph computations

@ hypergraphs, time-dependent graphs

o clustering/partitioning/path-finding (eigenvector computations)
Divide-and-conquer algorithms representable by tensor folding

@ bitonic sort, FFT, scans
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Tensors for computational chemistry/physics

Manybody Schrodinger equation

@ ‘“curse of dimensionality” — exponential state space
Condensed matter physics

@ tensor network models (e.g. DMRG), tensor per lattice site
@ highly symmetric multilinear tensor representation

@ exponential state space localized — factorized tensor form
Quantum chemistry (electronic structure calculations)

@ models of molecular structure and chemical reactions

@ methods for calculating electronic correlation:

o “Post Hartree-Fock”: configuration interaction, coupled cluster,

Mgller-Plesset perturbation theory

@ multi-electron states as tensors,
e.g. electron ® electron ® orbital ® orbital

@ nonlinear equations of partially (anti)symmetric tensors

@ interactions diminish with distance — sparsity, low rank
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Coupled cluster using CTF

Extracted from Aquarius (Devin Matthews' code,
https://github.com/devinamatthews/aquarius)

FMI["mi”] += @.5%*WMNEF["mnef”]*T2["efin"];
WMNIJ["mnij”] += @.5%xWMNEF["mnef"]*T2["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef”1*T2["afmn"1;
WAMEI["amei”] -= @.5%*WMNEF["mnef”]1*T2["afin"1;

Z2["abij"] = WMNEF["ijab"1];

Z2["abij"] += FAE["af"1xT2["fbij"];
Z2["abij"] -= FMI["ni"]%T2["abnj"];
Z2["abij"] += @.5*WABEF["abef"]1xT2["efij"]1;
Z2["abij"] += 0.5*WMNIJ["mnij"]*T2["abmn"];
Z2["abij"] -= WAMEI["amei"]1*T2["ebmj"]1;

CTF is used within Aquarius, QChem, VASP, and Psi4
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Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum
chemistry method suite

@ provides Coupled Cluster methods: CCSD and CCSDT
@ derives equations via Tensor Contraction Engine (TCE)
@ generates contractions as blocked loops leveraging Global Arrays

Strong scaling CCSDT on Edison
Strong scaling CCSD on Edison

T T T T T T T
i i NWChem w3 -->¢--
w2 -

NWChem w20 - 1
1004 | e =N | 1024 =
W0 e Aquarius-CTF w4 ———
e
I R 256 -
wis —F— » .
" o —Se— [ g g
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4 I 1
I 2 M s 16 32 64 128 256 1 2 4 8 16 32 64 128 256
#nodes #nodes
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Coupled cluster on IBM BlueGene/Q and Cray XC30

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ*

Weak scaling on BlueGene/Q Weak scaling on BlueGene/Q
1024 — . ; 60 ———— T
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5 e4r < 1 & o ' : .
) e =
R R 1 8 : ! i i
161} X'/ |l ©
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512 — . : . i 350 — ) :
256 Aquarius-CTF CCSD —— Aquarius-CTF CCSD ——
[ Aquarius-CTF CCSDT -->¢-- 300 Aquarius-CTF CCSDT --»¢--
128 [t :
@ o250 | L | | | 4
. o - g
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1S., Matthews, Hammond, Demmel, JPDC, 2014
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Symmetry preserving algorithms

Tensor symmetry (e.g. A;j = Aj;) reduces memory and cost!
o for order d tensor, d! less memory
@ matrix-vector multiplication (A; = Aj;)?

=Y Ajb = ZAUb+b <ZA,J)
J

Ajibj # Ajib; but Aji(b; + bj) = AJ,(b + b)) — (1/2)n multiplies
for symmetrized contraction of symmetric order s+ v and v + t tensors
(s+t+v)!
sltlyl

fewer multiplies

numerically stable (by forward error bounds and in experiments)
lower overall cost for partially symmetric contractions
up to 9X for select contractions, 1.3X/2.1X for CCSD/CCSDT

Hermitian BLAS/LAPACK operations with 25% less cost
ongoing: relationship to fast structured matrix multiplication

15., Demmel; Technical Report, ETH Zurich, 2015.
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Impact and future work

Many further directions (theory, implementation, application)
with much overlap (tensor equations, factorizations, symmetries)
@ Cyclops Tensor Framework
v’ already widely-adapted in quantum chemistry, many requests for features
e integrate matrix/tensor factorizations
e optimize across multiple tensor operations (scheduling, layout persistence)
e engage high-impact application domains
@ tensor networks for condensed matter-physics
@ convolutional neural networks
@ recommender systems (tensor completion)
@ communication-avoiding algorithms
v/ existing fast implementations already used by applications (e.g. QBall)
o find efficient methods of searching larger tuning spaces
e algorithms for computing eigenvectors, SVD, tensor factorizations
e analyze (randomized) algorithms for sparse matrix factorization
@ symmetry in tensor computations
e cost improvements v — library implementations — application speed-ups
e study symmetries in tensor equations and factorizations
e consider other symmetries and relation to fast matrix multiplication
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Lower bounds for symmetry preserving algorithms

Bilinear algorithms! enable robust communication lower bounds
@ a bilinear algorithm is defined by matrices F(A), F(B) F(C)

c = FOFATL) o (FBITp)]

where o is the Hadamard (pointwise) product

T T

X X X x XX X x x X X X X X X

X X X X X X X XX X X X X X X

X X X X X X XX XX X X

Cl=|x X X X X X X al|lo X X X b
X X X X X x X X X

X X XX X X X

X X X X X X X XX X XX X X XXX

@ communication lower bounds derived based on matrix rank?

1Pan, Springer, 1984
S., Hoefler, Demmel, in preparation
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Nesting of bilinear algorithms

Given two bilinear algorithms:

A =(FY PP FE)
Mo =(FY, FP) F{O)

We can nest them by computing their tensor product

M@ A =(FA o FN FE o FE) F© o FE)
rank(A1 ® Az) =rank(A1) - rank(Az)

Provably efficient algorithms for multilinear algebra 30/27



Symmetry preserving algorithm vs Strassen’s algorithm

Symmetry preserving alg. vs Strassen’s alg. (s=t=v=w/3)
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Block-cyclic algorithm for s-step methods

[c o e ala 0o o o o
Xt 1 .
[0 0 o o [& s o 0! o-dummy computation
o o o oo o & :
I=3u=lio o o o . K o o] u=2 x(3)
= e 2@
=1 u=1:e o ofo o o o]u=2 x(1

For s-steps of a (2m + 1)?-point stencil with block-size of H/?/m,
Wi = 0 () s = O(sn/(pH)) Qs — Of T
Kr = Hpo ke = O(sn®/(p r = Hpo

which are good when H = ©(n?/p), so the algorithm is useful when the
cache size is a bit smaller than n?/p
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2.5D LU on MIC

LU factorization strong scaling on Stampede (MIC + Sandy Bridge)
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Topology-aware mapping on BG/Q

LU factorization strong scaling on Mira (BG/Q), n=65,536

100 T T
2D LU, custom mapping —¥—
2D LU, default mapping b o T e

] e B oo e e e .

Gigaflop/s/node
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Symmetric matrix representation

Symmetric matrix Unique part of symmetric matrix

I
Omm |
|
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Blocked distributions of a symmetric matrix

Naive blocked layout Block-cyclic layout
P2
- PO P2 EEE
|
P2
P3
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Cyclic distribution of a symmetric matrix

Cyclic layout ~ Improved blocked layout

m-P1
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Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

1 .
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Our CCSD factorization

Wg’" = vi'+ Z ver t,f,
Wi = v+ P v,-':"t? + 1 A
ef
V‘~/i:m = Z WeTnta + Z V:;atf +3 Z Vef tm s
We™ = T+ P T+ = Z v

7 = ﬁa—Zﬁ-’"thf:tHZve, ot S vFT +2> v
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2 ei tmns
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ab ab i ab ;e aiE:"ame E: amb
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Stability of symmetry preserving algorithms

Relative error of c=A*b with positive A and alternating b Relative error of squaring a Householder transformation
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Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000

orbitals on 4096 nodes of Mira

4 processes per node, 16 threads per process
Total time: 18 mins
v-orbitals, o-electrons

kernel % of time | complexity architectural bounds
DGEMM 45% O(v*0?/p) flops/mem bandwidth
broadcasts 20% O(v*0%/pv/M) | multicast bandwidth
prefix sum 10% O(p) allreduce bandwidth
data packing | 7% O(v?0?/p) integer ops
all-to-all-v 7% O(v?0?/p) bisection bandwidth
tensor folding | 4% O(v?0?/p) memory bandwidth
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Algebraic shortest path computations

All-pairs shortest-paths (APSP):

@ distance matrix is the closure of A,
A= DADAD ... A"

@ Floyd—Warshall = Gauss—Jordan elimination ~ Gaussian elimination
e O(n®) cost, but contains length nlog n dependency path!

e path doubling: log n steps, O(n3log n) cost:
B=1aA, B** = Bk @ B, B" = A*

@ sparse path doubling?:
o let C be subset of B corresponding to paths containing exactly k edges,

sz:Bk@(C®Bk)

o O(n?) cost, dependency paths length O(log? n)

1S., Buluc, Demmel, IPDPS, 2013
2Tiskin, Springer LNCS, 2001
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Coupled cluster methods

Coupled cluster provides a systematically improvable approximation to the
manybody time-independent Schrodinger equation H|W) = E|V)
@ the Hamiltonian has one- and two- electron components H = F + V
e Hartree-Fock (SCF) computes mean-field Hamiltonian: F, V

e Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) consider
transitions of (doubles, triples, and quadruples) of electrons to
unoccupied orbitals, encoded by tensor operator,
T=Ti+Tr+ T3+ T4

@ they use an exponential ansatz for the wavefunction, ¥ = e’ ¢
where ¢ is a Slater determinant

e expanding 0 = (¢'|H|W) yields nonlinear equations for {T;} in F, V
1_,..
0=Vi*+P(a,b) Y TiF, = SP(iJ) Y T V" T + ..
e mnef

where P is an antisymmetrization operator
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Symmetry preserving algorithms

By exploiting symmetry, reduce multiplies (but increase adds)?

@ rank-2 vector outer product
Cj=aibj+ajbj = (ai + aj)(b,- + bj) — ajb; — ajb;

@ squaring a symmetric matrix A (or AB + BA)

Ci=Y Ay = D (Au+Ay+Ap)? -
P P

@ for symmetrized contraction of symmetric order s+ v and v + t tensors

(s+t+v)!

1y fewer multiplies
sltlv!

e.g. cases above are
e s=1t=1v=0— reduction by 2X
e s=1t=1,v=1— reduction by 6X

15., Demmel; Technical Report, ETH Zurich, 2015.
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Applications of symmetry preserving algorithms

Extensions and applications:
@ algorithms generalize to antisymmetric and Hermitian tensors

@ cost reductions in partially-symmetric coupled cluster contractions:
2X-9X for select contractions, 1.3X-2.1X for methods

o for Hermitian tensors, multiplies cost 3X more than adds

o (2/3)n3 bilinear rank for squaring a nonsymmetric matrix

@ decompose symmetric contractions into smaller symmetric contractions
Further directions:

@ high performance implementation

@ symmetry in tensor equations (e.g. Cholesky factors)

@ generalization to other group actions
@ relationships to fast matrix multiplication and structured matrices
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Communication cost of symmetry preserving algorithms

For contraction of order s + v tensor with order v + t tensor?

@ symmetry preserving algorithm requires % fewer multiplies
@ matrix-vector-like algorithms (min(s, v, t) = 0)
e vertical communication dominated by largest tensor
e horizontal communication asymptotically greater if only unique elements
are stored and s # v # t
@ matrix-matrix-like algorithms (min(s, v, t) > 0)
e vertical and horizontal communication costs asymptotically greater for
symmetry preserving algorithm when s # v # ¢t

o further work: bounds for nested and iterative bilinear algorithms

15., Hoefler, Demmel; Technical Report, ETH Zurich, 2015.
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