
Strassen-like algorithms for symmetric tensor contractions

Edgar Solomonik

University of Illinois at Urbana-Champaign

Scientfic and Statistical Computing Seminar
University of Chicago

April 13, 2017

1 / 27 Fast symmetric tensor contractions

Outline

1 Introduction

2 Applications of tensor symmetry

3 Exploiting symmetry in matrix products

4 Exploiting symmetry in tensor contractions

5 Numerical error analysis

6 Exploiting partial-symmetry in tensor contractions

7 Communication cost analysis

8 Summary and conclusion

2 / 27 Fast symmetric tensor contractions

Terminology
A tensor T ∈ Rn1×···×nd has

order d (i.e. d modes / indices)
dimensions n1-by-· · · -by-nd (in this talk, usually each ni = n)
elements T i1...id = T i where i ∈ {1, . . . , n}d

We say a tensor is symmetric if for any j , k ∈ {1, . . . , n}

T i1...i j ...ik ...id = T i1...ik ...i j ...id

A tensor is antisymmetric (skew-symmetric) if for any j , k ∈ {1, . . . , n}

T i1...i j ...ik ...id = (−1)T i1...ik ...i j ...id

A tensor is partially-symmetric if such index interchanges are restricted to
be within subsets of {1, . . . , n}, e.g.

T ij
kl = T ji

kl = T ji
lk = T ij

lk

3 / 27 Fast symmetric tensor contractions

Tensor contractions
We work with contractions of tensors

A of order s + v , and
B of order v + t into
C of order s + t, defined as

C i j =
∑

k∈{1,...,n}v

AikBkj

requires O(s + t + v︸ ︷︷ ︸
ω

) multiplications and additions

assumes an index ordering, but does not lose generality
works with any symmetries of A and B
is extensible to symmetries of C via symmetrization (sum all
permutations of modes in C , denoted [C]i j)
generalizes simple matrix operations, e.g.

(s, t, v) = (1, 0, 1)︸ ︷︷ ︸
matrix-vector product

, (s, t, v) = (1, 1, 0)︸ ︷︷ ︸
vector outer product

, (s, t, v) = (1, 1, 1)︸ ︷︷ ︸
matrix-matrix product

4 / 27 Fast symmetric tensor contractions

Applications of symmetric tensor contractions

Symmetric and Hermitian matrix operations are part of the BLAS
matrix-vector products: symv (symm), hemv, (hemm)
symmetrized outer product: syr2 (syr2k), her2, (her2k)
these operations dominate symmetric/Hermitian diagonalization

Hankel matrices are order 2 log2(n) partially-symmetric tensors

H =

[
H11 HT

21
H21 H22

]

where H11,H21,H22 are also Hankel.

In general, partially-symmetric tensors are nested symmetric tensors
a nonsymmetric matrix is a vector of vectors
T ij

kl = T ji
kl = T ji

lk = T ij
lk is a symmetric matrix of symmetric matrices

5 / 27 Fast symmetric tensor contractions

Applications of partially-symmetric tensor contractions
High-accuracy methods in computational quantum chemistry

solve the multi-electron Schrödinger equation H|Ψ〉 = E |Ψ〉, where
H is a linear operator, but Ψ is a function of all electrons
use wavefunction ansatze like Ψ ≈ Ψ(k) = eT (k) |Ψ(k−1)〉 where Ψ(0)

is a determinant function and T (k) is an order 2k tensor, acting as a
multilinear excitation operator on the electrons
are most commonly versions of coupled-cluster methods which use
the above ansatze for k ∈ {2, 3, 4} (CCSD, CCSDT, CCSDTQ)
solve iteratively for T (k), where each iteration has cost O(n2k+2),
dominated by contractions of partially antisymmetric tensors
for example, a dominant contraction in CCSD (k = 2) is

Zak̄
i c̄ =

n∑
b=1

n∑
j=1

T ab
ij · V

j k̄
bc̄

where T ab
ij = −T ba

ij = T ba
ji = −T ab

ji . We’ll show an algorithm that
requires n6 rather than 2n6 operations.

6 / 27 Fast symmetric tensor contractions

Symmetric matrix times vector

Let b be a vector of length n with elements in %
Let A be an n-by-n symmetric matrix with elements in %

Aij = Aji

We multiply matrix A by b,

c = A · b

c i =
n∑

j=1
Aij · bj︸ ︷︷ ︸

nonsymmetric

This usual form has cost (ignoring low-order terms here and later)

Tsymv(%, n) = µ% · n2 + ν% · n2

where µ% is the cost of multiplication and ν% of addition

7 / 27 Fast symmetric tensor contractions

Fast symmetric matrix times vector

We can perform symv using fewer element-wise multiplications,

c i =
n∑

j=1
Aij · (bi + bj)︸ ︷︷ ︸

symmetric

−

 n∑
j=1

Aij

 · bi︸ ︷︷ ︸
requires only n mults.

Aij · (bi + bj) is symmetric, requires
(n+1

2
)

multiplications(∑n
j=1 Aij

)
· bi may be computed with n multiplications

The total cost of the new form is

T ′symv(%, n) = µ% ·
1
2n2 + ν% ·

5
2n2

This formulation is cheaper when µ% > 3ν%
Form symm the formulation is cheaper when µ% > ν%

8 / 27 Fast symmetric tensor contractions

Symmetric rank-2 update

Consider a rank-2 outer product of vectors a and b of length n into
symmetric matrix C

C = a · bT + b · aT

C ij =
[
a · bT

]
ij
≡ ai · bj︸ ︷︷ ︸

nonsymmetric

+ aj · bi︸ ︷︷ ︸
permutation

Usually computed via the n2 multiplications ai · bj with the cost

Tsyr2(%, n) = µ% · n2 + ν% · n2.

9 / 27 Fast symmetric tensor contractions

Fast symmetric rank-2 update

We may compute the rank-2 update via a symmetric intermediate quantity

C ij = (ai + aj) · (bi + bj)︸ ︷︷ ︸
symmetric

− ai · bi − aj · bj︸ ︷︷ ︸
requires only n mults in total

We can compute all (ai + aj) · (bi + bj) in
(n+1

2
)

multiplications
The total cost is then given to leading order by

T ′syr2(%, n) = µ% ·
1
2n2 + ν% ·

5
2n2.

T ′syr2(%, n) < Tsyr2(%, n) when µ% > 3ν%
T ′syr2K(%, n,K) < Tsyr2K(%, n,K) when µ% > ν%

10 / 27 Fast symmetric tensor contractions

Symmetrized product of symmetric matrices

Given symmetric matrices A,B of dimension n on non-associative
commutative ring %, we seek to compute the anticommutator of A and B

C = A · B + B · A

C ij = [A · B]ij ≡
n∑

k=1
Aik · Bjk︸ ︷︷ ︸

nonsymmetric

+
n∑

k=1
Ajk · Bik︸ ︷︷ ︸
permutation

The above equations require n3 multiplications and n3 adds for a total
cost of

Tsyrmm(%, n) = µ% · n3 + ν% · n3.

Note that the symmetrized product defines a non-associative commutative
ring (the Jordan ring) over the set of symmetric matrices.

11 / 27 Fast symmetric tensor contractions

Fast symmetrized product of symmetric matrices
We can combine the ideas from the fast routines for symv and syrk

C ij =
∑

k
(Aij + Aik + Ajk) · (Bij + Bik + Bjk)︸ ︷︷ ︸

symmetric, requires
(n+2

3

)
mults

− Aij ·
(∑

k
Bij + Bik + Bjk

)
︸ ︷︷ ︸

requires
(n+1

2

)
mults

−Bij ·
(∑

k
Aij + Aik + Ajk

)
︸ ︷︷ ︸

requires
(n+1

2

)
mults

−
∑

k
Aik · Bik −

∑
k

Ajk · Bjk︸ ︷︷ ︸
requires

(n+1
2

)
mults

The reformulation requires
(n

3
)

multiplications to leading order,

T ′syrmm(%, n) = µ% ·
1
6n3 + ν% ·

5
3n3,

which is faster than Tsyrmm when µ% > (4/5)ν%.
12 / 27 Fast symmetric tensor contractions

Fast symmetrized product of symmetric matrices

We can rewrite that algorithm in terms using symmetrization notation:

C ij = [AB]ij =
∑

k
(Aij + Aik + Ajk) · (Bij + Bik + Bjk)︸ ︷︷ ︸∑

k [A]ijk ·[B]ijk

− Aij ·
(∑

k
Bij + Bik + Bjk

)
︸ ︷︷ ︸

Aij ·
∑

k [B]ijk

−Bij ·
(∑

k
Aij + Aik + Ajk

)
︸ ︷︷ ︸

Bij ·
∑

k [A]ijk

−
∑

k
Aik · Bik −

∑
k

Ajk · Bjk︸ ︷︷ ︸
[Aik◦1B]ij

=
∑

k
[A]ijk · [B]ijk − Aij

∑
k

[B]ijk − Bij
∑

k
[A]ijk − [A ◦1 B]ij

where A ◦1 B =
∑

k Aik · Bjk

13 / 27 Fast symmetric tensor contractions

Comparison to Strassen’s algorithm

 1

 2

 4

 8

 16

 32

 64

10 100 1000 10000 100000 1e+06

[n
ω
/(s

!t!
v!

)]
/ #

m
ul

tip
lic

at
io

ns
(s

pe
ed

-u
p

ov
er

 c
la

ss
ic

al
 d

ire
ct

 e
va

lu
at

io
n

al
g.

)

ns/s! (matrix dimension)

Symmetry preserving alg. vs Strassen’s alg. (s=t=v=ω/3)

Strassen’s algorithm
Sym. preserving ω=6
Sym. preserving ω=3

14 / 27 Fast symmetric tensor contractions

Fully symmetric tensor contractions
We can now state the general symmetric tensor contraction algorithms,
given

A of order s + v , and
B of order v + t into
C of order s + t, defined as

we define the (nonsymmetrized) contraction as C = A�v B where
C i j =

∑
k∈{1,...,n}v

AikBkj

We can then define the symmetrized tensor contraction as
C i = [A�v B]i

The usual method first computes A�v B with cost

T ′syctr(%, n, s, t, v) = µ% ·
(

n
s

)(
n
t

)(
n
v

)
+ ν% ·

(
n
s

)(
n
t

)(
n
v

)
.

15 / 27 Fast symmetric tensor contractions

Fast fully-symmetric contraction algorithm
The fast algorithm is defined as follows (using ω = s + t + v)

C i =
∑

k∈{1,...,n}v

[A]ik · [B]ik︸ ︷︷ ︸
symmetric, requires

(n+ω−1
ω

)
multiplications

−
v∑

p+q=1

∑
k∈{1,...,n}v−p−q

(∑
p∈{1,...,n}p

[A]ikp

)
·
(∑

q∈{1,...,n}q

[B]ikq

)
︸ ︷︷ ︸

requires O(nω−1) multiplications

−
min(s,t)∑

r=1
[A�v+r B]i︸ ︷︷ ︸

requires O(nω−1) multiplications

The leading order cost is

T ′syctr(%, n, s, t, v) = µ% ·
(

n
ω

)
+ ν% ·

(
n
ω

)
·
[(
ω

t

)
+

(
ω

s

)
+

(
ω

v

)]
.

16 / 27 Fast symmetric tensor contractions

Reduction in operation count of fast algorithm with
respect to standard

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

1 2 3 4 5 6

re
du

ct
io

n
fa

ct
or

ω

Reduction in operation count for different entry types

(s+t=ω) entries are matrices
(s+t=ω) entries are complex
(s+t=ω) entries are real

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

1 2 3 4 5 6
ω

Reduction in operation count for different entry types

(s+t+v=ω) entries are matrices
(s+t+v=ω) entries are complex
(s+t+v=ω) entries are real

(s, t, v) values for left and right graph tabulated below

ω 1 2 3 4 4 6
Left graph (1, 0, 0) (1, 1, 0) (2, 1, 0) (2, 2, 0) (3, 2, 0) (3, 3, 0)
Right graph (1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 1, 1) (2, 2, 1) (2, 2, 2)

17 / 27 Fast symmetric tensor contractions

Theoretical error bounds

We express error bounds in terms of γn = nε
1−nε , where ε is the machine

precision.

Let Ψ be the standard algorithm and Φ be the fast algorithm. The error
bound for the standard algorithm arises from matrix multiplication

||fl (Ψ(A,B))− C ||∞ ≤ γm · ||A||∞ · ||B||∞ where m =

(
n
v

)(
ω

v

)
.

The following error bound holds for the fast algorithm

||fl (Φ(A,B))−C ||∞ ≤ γm · ||A||∞ · ||B||∞ where m = 3
(

n
v

)(
ω

t

)(
ω

s

)
.

18 / 27 Fast symmetric tensor contractions

Stability of symmetry preserving algorithms

19 / 27 Fast symmetric tensor contractions

Nesting the fast algorithm

For partially-(anti)symmetric contractions we can
nest the new algorithm over each group of symmetric modes
reduction in mults can translate to reduction in the number of
operations
for Hankel matrices, yields sub O(n2) algorithm, but not O(n) or
O(n log(n)) as reduction in mults is a factor of two only in leading
order
but for coupled-cluster contractions, significant reductions in cost can
be achieved

CCSD 1.3X on a typical system
CCSDT 2.1X on a typical system
CCSDTQ 5.7X on a typical system

20 / 27 Fast symmetric tensor contractions

Communication cost of the standard algorithm

We consider communication bandwidth cost on a sequential machine with
cache size M.

The intermediate formed by the standard algorithm may be computed via
matrix multiplication with communication cost,

W (n, s, t, v ,M) = Θ

((n
s
)(n

t
)(n

v
)

√
M

+

(
n

s + v

)
+

(
n

t + v

)
+

(
n

s + t

))
.

The cost of symmetrizing the resulting intermediate is low-order or the
same.

21 / 27 Fast symmetric tensor contractions

Communication cost of the fast algorithm

We can lower bound the cost of the fast algorithm using the
Hölder-Brascamp-Lieb inequality.

An algorithm that blocks Z symmetrically nearly attains the cost

W ′(n, s, t, v ,M) = O
((n

ω

)
Mω/(ω−min(s,t,v))

·
[(
ω

t

)
+

(
ω

s

)
+

(
ω

v

)]

+

(
n

s + v

)
+

(
n

t + v

)
+

(
n

s + t

))
.

which is not far from the lower bound and attains it when s = t = v .

22 / 27 Fast symmetric tensor contractions

 1

 2

 3

 4

1 2 3 4 5fa
ct

or
 o

f r
ed

uc
tio

n
in

 c
om

m
un

ic
at

io
n

vo
lu

m
e

ω

Reduction in communication (W/W’)

fast alg comm reduction forr s+t+v=ω

fast alg comm reduction for s+t=ω

23 / 27 Fast symmetric tensor contractions

Further communication lower bounds

We can use bilinear algorithm formulations to derive comm. lower bounds
symmetry preserving tensor contraction algorithms have arbitrary
order projections from order d set
bilinear algorithms1 provide a more general framework
a bilinear algorithm is defined by matrices F (A),F (B),F (C),

c = F (C)[(F (A)Ta) ◦ (F (B)Tb)]

where ◦ is the Hadamard (pointwise) product

communication lower bounds derived based on matrix rank2

1Pan, Springer, 1984
2S., Hoefler, Demmel, in preparation

24 / 27 Fast symmetric tensor contractions

Communication cost of symmetry preserving algorithms

For contraction of order s + v tensor with order v + t tensor3

symmetry preserving algorithm requires (s+v+t)!
s!v !t! fewer multiplies

matrix-vector-like algorithms (min(s, v , t) = 0)
vertical communication dominated by largest tensor
horizontal communication asymptotically greater if only unique
elements are stored and s 6= v 6= t

matrix-matrix-like algorithms (min(s, v , t) > 0)
vertical and horizontal communication costs asymptotically greater for
symmetry preserving algorithm when s 6= v 6= t

3S., Hoefler, Demmel; Technical Report, ETH Zurich, 2015.

25 / 27 Fast symmetric tensor contractions

Summary of results
The following table lists the leading order number of multiplications F
required by the standard algorithm and F ′ by the fast algorithm for various
cases of symmetric tensor contractions,

ω s t v F F ′ applications
2 1 1 0 n2 n2/2 syr2, syr2k, her2, her2k
2 1 0 1 n2 n2/2 symv, symm, hemv, hemm
3 1 1 1 n3 n3/6 symmetrized matmul
s+t+v s t v

(n
s
)(n

t
)(n

v
) (n

ω

)
any symmetric tensor contraction

High-level conclusions:
The fast symmetric contraction algorithms provide interesting
potential arithmetic cost improvements for complex BLAS routines
and partially symmetric tensor contractions.
However, the new algorithms require more communication per flop,
incur more numerical error, and usually unable to exploit
fused-multiply-add units or blocked matrix multiplication primitives.

26 / 27 Fast symmetric tensor contractions

Acknowledgements and references

Collaborators on various parts:
James Demmel
Torsten Hoefler
Devin Matthews

S., Demmel; Technical Report, ETH Zurich, 2015.

27 / 27 Fast symmetric tensor contractions

Backup slides

28 / 27 Fast symmetric tensor contractions

The fast algorithm for computing C forms the following intermediates with(n
ω

)
multiplications (where ω = s + t + v),

Zi =

(∑
j∈χ(i)

Aj

)
·
(∑

l∈χ(i)
Bl

)

Vi =

(∑
j∈χ(i)

Aj

)
·
(∑

k1

∑
l∈χ(i∪k)

Bl

)

+

(∑
k1

∑
j∈χ(i∪k)

Aj

)
·
(∑

l∈χ(i)
Bl

)

Wi =

(∑
j∈χ(i)

Aj

)
·
(∑

l∈χ(i)
Bl

)
Ci =

∑
k

Zi∪k −
∑

k
Vi∪k

−
∑

j∈χ(i)

(∑
k

Wj∪k

)

29 / 27 Fast symmetric tensor contractions

	Introduction
	Applications of tensor symmetry
	Exploiting symmetry in matrix products
	Exploiting symmetry in tensor contractions
	Numerical error analysis
	Exploiting partial-symmetry in tensor contractions
	Communication cost analysis
	Summary and conclusion
	Appendix

