# 2.5D algorithms for distributed-memory computing

Edgar Solomonik

UC Berkeley

July, 2012

(本部) (本語) (本語)

#### Outline

Introduction Strong scaling

# 2.5D dense linear algebra2.5D matrix multiplication2.5D LU factorization2.5D QR factorization

All-pairs shortest-paths

Symmetric tensor contractions

Conclusion

Strong scaling

#### Solving science problems faster

Parallel computers can solve bigger problems

#### weak scaling

Parallel computers can also solve a fixed problem faster

#### strong scaling

Obstacles to strong scaling

- may increase relative cost of communication
- may hurt load balance

How to reduce communication and maintain load balance?

- reduce (minimize) communication along the critical path
- exploit the network topology

Strong scaling

#### Topology-aware multicasts (BG/P vs Cray)



Introduction 2.5D dense linear algebra Symmetric tensor contractions

Strong scaling

#### 2D rectangular multicasts trees



Edgar Solomonik

2.5D algorithms

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### Blocking matrix multiplication



< 17 ▶

- ▲ 문 ▶ - ▲ 문 ▶

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

2D matrix multiplication [Cannon 69], [Van De Geijn and Watts 97]



 $O(n^3/p)$  flops  $O(n^2/\sqrt{p})$  words moved  $O(\sqrt{p})$  messages  $O(n^2/p)$  bytes of memory



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

3D matrix multiplication [Agarwal et al 95], [Aggarwal, Chandra, and Snir 90], [Bernsten 89], [McColl and Tiskin 99]



 $O(n^3/p)$  flops  $O(n^2/p^{2/3})$  words moved O(1) messages  $O(n^2/p^{2/3})$  bytes of memory



2.5D dense linear algebra Symmetric tensor contractions

2.5D matrix multiplication

#### 2.5D matrix multiplication [McColl and Tiskin 99]



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D strong scaling

- n = dimension, p =  $\#processors,\,c$  = #copies of data
  - must satisfy  $1 \le c \le p^{1/3}$
  - special case: c = 1 yields 2D algorithm
  - special case:  $c = p^{1/3}$  yields 3D algorithm

$$cost(2.5D MM(p, c)) = O(n^3/p)$$
 flops  
+  $O(n^2/\sqrt{c \cdot p})$  words moved  
+  $O(\sqrt{p/c^3})$  messages\*

\*ignoring log(p) factors

・ロト ・同ト ・ヨト ・ヨト

#### 2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

## 2.5D strong scaling

- $n=\mbox{dimension},\ p=\mbox{\#processors},\ c=\mbox{\#copies}$  of data
  - must satisfy  $1 \le c \le p^{1/3}$
  - special case: c = 1 yields 2D algorithm
  - special case:  $c = p^{1/3}$  yields 3D algorithm

$$cost(2D MM(p)) = O(n^3/p) \text{ flops} + O(n^2/\sqrt{p}) \text{ words moved} + O(\sqrt{p}) \text{ messages}^* = cost(2.5D MM(p, 1))$$

\*ignoring log(p) factors

・ロト ・同ト ・ヨト ・ヨト

#### 2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

### 2.5D strong scaling

- n = dimension, p =  $\#processors,\,c$  = #copies of data
  - must satisfy  $1 \le c \le p^{1/3}$
  - special case: c = 1 yields 2D algorithm
  - special case:  $c = p^{1/3}$  yields 3D algorithm

$$cost(2.5D \text{ MM}(\mathbf{c} \cdot p, \mathbf{c})) = O(n^3/(\mathbf{c} \cdot p)) \text{ flops} + O(n^2/(\mathbf{c} \cdot \sqrt{p})) \text{ words moved} + O(\sqrt{p}/\mathbf{c}) \text{ messages} = cost(2D \text{ MM}(p))/\mathbf{c}$$

perfect strong scaling

< 日 > < 同 > < 三 > < 三 >

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### Strong scaling matrix multiplication

2.5D MM on BG/P (n=65,536)



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D MM on 65,536 cores

2.5D MM on 16,384 nodes of BG/P



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### Cost breakdown of MM on 65,536 cores

Matrix multiplication on 16,384 nodes of BG/P



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D recursive LU

 $A = L \cdot U$  where L is lower-triangular and U is upper-triangular

- ► A 2.5D recursive algorithm with no pivoting [A. Tiskin 2002]
- Tiskin gives algorithm under the BSP model
  - Bulk Synchronous Parallel
  - considers communication and synchronization
- We give an alternative distributed-memory adaptation and implementation
- Also, we lower-bound the latency cost

< ロ > < 同 > < 回 > < 国 > < 国 > < 国

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2D blocked LU factorization



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2D blocked LU factorization



ういつ 単原 イボン イボン く B > イロ >

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2D blocked LU factorization



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

20/62

#### 2D blocked LU factorization



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2D block-cyclic decomposition

| 8 | 8 | 8 | 8 |
|---|---|---|---|
|   |   |   |   |
| 8 | 8 | 8 | 8 |
|   |   |   |   |
| 8 | 8 | 8 | 8 |
|   |   |   |   |
| 8 | 8 | 8 | 8 |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2D block-cyclic LU factorization





2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2D block-cyclic LU factorization



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2D block-cyclic LU factorization



Edgar Solomonik

3

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### A new latency lower bound for LU

- Relate volume to surface area to diameter
- ► For block size *n*/**d** LU does
  - $\Omega(n^3/d^2)$  flops
  - $\Omega(n^2/\mathbf{d})$  words
  - ▶ Ω(d) msgs
- Now pick d (=latency cost)
  - $\mathbf{d} = \mathbf{\Omega}(\sqrt{\mathbf{p}})$  to minimize flops
  - $\mathbf{d} = \Omega(\sqrt{\mathbf{c} \cdot \mathbf{p}})$  to minimize words
- More generally, latency · bandwidth = n<sup>2</sup>



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D LU factorization



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D LU factorization



・ロト ・聞 と ・ ヨ と ・ ヨ と

315

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D LU factorization



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D LU factorization

Look at how this update is distributed.

What does it remind you of?

Edgar Solomonik

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D LU factorization



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D LU strong scaling (without pivoting)

2.5D LU on BG/P (n=65,536)



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D LU with pivoting

- $A = P \cdot L \cdot U$ , where P is a permutation matrix
  - 2.5D generic pairwise elimination (neighbor/pairwise pivoting or Givens rotations (QR)) [A. Tiskin 2007]
    - pairwise pivoting does not produce an explicit L
    - pairwise pivoting may have stability issues for large matrices
  - Our approach uses tournament pivoting, which is more stable than pairwise pivoting and gives L explicitly
    - pass up rows of A instead of U to avoid error accumulation

< ロ > < 同 > < 回 > < 回 >

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### Tournament pivoting (CA-pivoting)

 $\{\mathbf{P}, \mathbf{L}, \mathbf{U}\} \leftarrow \mathbf{CA}\text{-pivot}(\mathbf{A}, \mathbf{n})$  if  $n \leq b$  then

base case

$$\{P, L, U\} = partial-pivot(A)$$

else

recursive case

$$\begin{bmatrix} A_1^T, A_2^T \end{bmatrix} = A \\ \{P_1, L_1, U_1\} = CA-pivot(A_1) \\ \begin{bmatrix} R_1^T, R_2^T \end{bmatrix} = P_1^T A_1 \\ \{P_2, L_2, U_2\} = CA-pivot(A_2) \\ \begin{bmatrix} S_1^T, S_2^T \end{bmatrix} = P_2^T A_2 \\ \{P_r, L, U\} = partial-pivot(\begin{bmatrix} R_1^T, S_1^T \end{bmatrix}) \\ Form P \text{ from } P_r, P_1 \text{ and } P_2 \\ end \text{ if }$$

< 同 ▶

33/62

A B > A B >

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### Tournament pivoting

Partial pivoting is not communication-optimal on a blocked matrix

- requires message/synchronization for each column
- ► O(n) messages needed

Tournament pivoting is communication-optimal

- performs a tournament to determine best pivot row candidates
- passes up 'best rows' of A

Image: Image:

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D LU factorization with tournament pivoting



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D LU factorization with tournament pivoting



イロト イ団ト イヨト イヨト

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D LU factorization with tournament pivoting



2.5D dense linear algebra Symmetric tensor contractions

2.5D LU factorization

#### 2.5D LU factorization with tournament pivoting



Edgar Solomonik

2.5D algorithms

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### Strong scaling of 2.5D LU with tournament pivoting

2.5D LU on BG/P (n=65,536)



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D LU on 65,536 cores



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D QR factorization

 $A = Q \cdot R$  where Q is orthogonal R is upper-triangular

- 2.5D QR using Givens rotations (generic pairwise elimination) is given by [A. Tiskin 2007]
- Tiskin minimizes latency and bandwidth by working on slanted panels
- 2.5D QR cannot be done with right-looking updates as 2.5D LU due to non-commutativity of orthogonalization updates

< ロ > < 同 > < 回 > < 国 > < 国 > < 国

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### 2.5D QR factorization using the YT representation

The YT representation of Householder QR factorization is more work efficient when computing only R

- ► We give an algorithm that performs 2.5D QR using the *YT* representation
- The algorithm performs left-looking updates on Y
- ► Householder with *YT* needs fewer computation (roughly 2x) than Givens rotations
- Our approach achieves optimal bandwidth cost, but has O(n) latency

< 口 > < 同 >

< ∃ > <

2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

з

#### 2.5D QR using YT representation



2.5D matrix multiplication 2.5D LU factorization 2.5D QR factorization

#### Latency-optimal 2.5D QR

To reduce latency, we can employ the TSQR algorithm

- 1. Given *n*-by-*b* panel partition into 2*b*-by-*b* blocks
- 2. Perform QR on each 2*b*-by-*b* block
- 3. Stack computed Rs into n/2-by-b panel and recursve

4. Q given in hierarchical representation

Need YT representation from hierarchical Q

- ► Take Y to be the first b columns of Q minus the identity
- Define  $T = (Y^T Y I)^{-1}$
- Sacrifices triangular structure of T
- Conjecture: stable if Q diagonal elements selected to be negative

< ロ > < 同 > < 回 > < 回 >

#### All-pairs shortest-paths

Given input graph G = (V, E)

- ► Find shortest paths between each pair of nodes v<sub>i</sub>, v<sub>j</sub>
- Reduces to semiring matrix multiplication with a dependency along k
- Computational structure is similar to LU factorization

Semiring matrix multiplication (SMM)

- Replace scalar multiply with scalar add
- Replace scalar add with scalar min
- Depending on processor can require more instructions

Image: A = 1

#### A recursive algorithm for all-pairs shortest-paths

Known alogirhtm for recusively computing APSP:

- 1. Given adjacency matrix A of graph G
- 2. Recursve on block A<sub>11</sub>
- 3. Compute SMM  $A_{12} \leftarrow A_{11} \cdot A_{12}$
- 4. Compute SMM  $A_{21} \leftarrow A_{21} \cdot A_{11}$
- 5. Compute SMM  $A_{22} \leftarrow A_{21} \cdot A_{12}$
- 6. Recursve on block  $A_{22}$
- 7. Compute SMM  $A_{21} \leftarrow A_{22} \cdot A_{21}$
- 8. Compute SMM  $A_{12} \leftarrow A_{12} \cdot A_{22}$
- 9. Compute SMM  $A_{11} \leftarrow A_{12} \cdot A_{21}$

- 4 同 ト 4 ヨ ト 4 ヨ ト

#### Block-cyclic recursive parallelization



< 一型

#### 2.5D APSP

2.5D recursive parallelization is straight-forward

- Perform 'cyclic-steps' using a 2.5D process grid
- Decompose 'blocked-steps' using an octant of the grid
- Switch to 2D algorithm when grid is 2D
- Minimizes latency and bandwidth!

A B > A B >

#### 2.5D APSP strong scaling performance



∃ >

#### Block-size gives latency-bandwidth tradewoff



#### Blocked vs block-cyclic vs cyclic decompositions





< 17 ▶

# Cyclops Tensor Framework (CTF)

Big idea:

- decompose tensors cyclically among processors
- pick cyclic phase to preserve partial/full symmetric structure

A B + A B +

< 一型

#### 3D tensor contraction



Edgar Solomonik 2.5D algorithms 53/62

・ロト ・四ト ・ヨト ・ヨト

315

#### 3D tensor cyclic decomposition



- 4 回 > - 4 回 > - 4 回 >

з

#### 3D tensor mapping

#### Red portion denotes what processor (2,1) owns



| P11         | P12 | P13         | <b>P</b> 14 |
|-------------|-----|-------------|-------------|
| <b>P</b> 21 | P22 | <b>P</b> 23 | <b>P</b> 24 |

<ロ> <同> <同> < 同> < 同>

315

#### A cyclic layout is still challenging

- In order to retain partial symmetry, all symmetric dimensions of a tensor must be mapped with the same cyclic phase
- ► The contracted dimensions of *A* and *B* must be mapped with the same phase
- And yet the virtual mapping, needs to be mapped to a physical topology, which can be any shape

A B > A B >

#### Virtual processor grid dimensions

- Our virtual cyclic topology is somewhat restrictive and the physical topology is very restricted
- Virtual processor grid dimensions serve as a new level of indirection
  - If a tensor dimension must have a certain cyclic phase, adjust physical mapping by creating a virtual processor dimension
  - Allows physical processor grid to be 'stretchable'

< ≣ > <

#### Virtual processor grid construction

Matrix multiply on 2x3 processor grid. Red lines represent virtualized part of processor grid. Elements assigned to blocks by cyclic phase.



#### 2.5D algorithms for tensors

We incorporate data replication for communication minimization into CTF

- Replicate only one tensor/matrix (minimize bandwidth but not latency)
- Autotune over mappings to all possible physical topologies
- Select mapping with least amount of communication
- Achieve minimal communication for tensors of widely different sizes

Introduction 2.5D dense linear algebra Symmetric tensor contractions

#### Preliminary contraction results on Blue Gene/P



#### Preliminary Coupled Cluster results on Blue $\mathsf{Gene}/\mathsf{Q}$

A Coupled Cluster with Double exictations (CCD) implementations is up and running

- Already scaled on up to 1024 nodes of BG/Q, up to 400 virtual orbitals
- Preliminary results already indicate performance matching NWChem
- Several major optimizations still in-progress
- Expecting significantly better scalability than any existing software

< 口 > < 同

Image: A = 1

#### Conclusion

Our contributions:

- 2.5D mapping of matrix multiplication
  - Optimal according to lower bounds [Irony, Tiskin, Toledo 04] and [Aggarwal, Chandra, and Snir 90]
- A new latency lower bound for LU
- Communication-optimal 2.5D LU, QR, and APSP
  - Both are bandwidth-optimal according to general lower bound [Ballard, Demmel, Holtz, Schwartz 10]
  - LU is latency-optimal according to new lower bound
- Cyclops Tensor Framework
  - Runtime autotuning to minimize communication
  - Topology-aware mapping in any dimension with symmetry considerations

< ロ > < 同 > < 回 > < 国 > < 国 > < 国

Rectangular collectives

#### Backup slides



#### Performance of multicast (BG/P vs Cray)



#### Why the performance discrepancy in multicasts?

#### Cray machines use binomial multicasts

- Form spanning tree from a list of nodes
- Route copies of message down each branch
- Network contention degrades utilization on a 3D torus
- BG/P uses rectangular multicasts
  - Require network topology to be a k-ary n-cube
  - Form 2n edge-disjoint spanning trees
    - Route in different dimensional order
    - Use both directions of bidirectional network