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Introduction
A parallelized (distributed memory) method for solving Poisson’s equation using a High-order spectral 

element Galerkin method (GM) with an arbitrarily preconditioned conjugate gradient iterative method (PCGM) 
is presented in this work. A typical PCGM requires at least two global reductions among elements to determine 
the search direction, namely 𝜶 and 𝜷. Additionally, elemental domains 𝛀 must exchange border residuals on a 
subdomain 𝚪 with all neighboring elements. This method avoids performing a local exchange by inserting nodal 
residuals that need to be exchanged (𝐲𝚪) into the all-reduce communication required to calculate 𝜶. In 
application, this method provides a faster alternative for a latency bound locally communicated GM solver.
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Algorithm Characteristics

• Two global reductions required for 𝛼 and 𝛽, 
regardless of parallelism 

• Arbitrary agglomeration can be used as there 
are no local communications

• Algorithm effectively parallelizes all BLAS 1,2 
operations

Scaling Analysis

Strong and Weak Scaling Analysis: “×” Blue, Orange, Grey, and Yellow correspond to data sizes 
with (𝑛𝑅 = 8, 𝑛𝜃 = 32), (𝑛𝑅 = 8, 𝑛𝜃 = 64), (𝑛𝑅 = 16, 𝑛𝜃 = 64), and (𝑛𝑅 = 16, 𝑛𝜃 = 128), 
respectively. “∎” markers denote series for weak scaling analysis. All runs used 64 basis points 
per element, and 100 iterations.

(let 𝐼 and Γ denote interior and border nodes, respectively.)
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Conclusion
Ultimately, this algorithm details a more 

efficient choice when a computation is bound 
by latency using a PCGM on a GM solver. As 
long as 𝜶⋙ 𝜷𝒏𝑹𝒏𝜽, meaning a local residual 
exchange would cost more than the additional 
bandwidth for the global residual exchange, 
one should expect favorable scaling. 

Note that this study considers an arbitrary 
preconditioner (all simulations ran for 100 
iterations regardless of error), as number of 
iterations plays an obvious role in timing 
iterative methods. High-order spectral 
elements methods are notoriously poorly 
conditioned, so a separate study entirely would 
need to be done to characterize a parallel 
algorithm that considers an optimal 
preconditioner.
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