Parallel Numerical Algorithms
Chapter 6 – LU Factorization

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512
Outline

1. LU Factorization
 - Motivation
 - Gaussian Elimination

2. Parallel Algorithms for LU
 - Fine-Grain Algorithm
 - Agglomeration Schemes
 - Mapping Schemes
 - Scalability

3. Partial Pivoting
System of linear algebraic equations has form

\[Ax = b \]

where \(A \) is given \(n \times n \) matrix, \(b \) is given \(n \)-vector, and \(x \) is unknown solution \(n \)-vector to be computed.

Direct method for solving general linear system is by computing **LU factorization**

\[A = LU \]

where \(L \) is unit lower triangular and \(U \) is upper triangular.
LU Factorization

- System $Ax = b$ then becomes
 \[LUx = b \]

- Solve lower triangular system
 \[Ly = b \]
 by forward-substitution to obtain vector y

- Finally, solve upper triangular system
 \[Ux = y \]
 by back-substitution to obtain solution x to original system
LU factorization can be computed by Gaussian elimination as follows, where U overwrites A

\begin{align*}
\text{for } k = 1 \text{ to } n - 1 \\
\quad \text{for } i = k + 1 \text{ to } n \\
\quad \quad \ell_{ik} = a_{ik} / a_{kk} \\
\quad \text{end} \\
\quad \text{for } j = k + 1 \text{ to } n \\
\quad \quad \text{for } i = k + 1 \text{ to } n \\
\quad \quad \quad a_{ij} = a_{ij} - \ell_{ik} a_{kj} \\
\quad \text{end} \\
\text{end}
\end{align*}

{ loop over columns }
{ compute multipliers for current column }
{ apply transformation to remaining submatrix }

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 5 / 44
Gaussian Elimination Algorithm

- In general, row interchanges (pivoting) may be required to ensure existence of LU factorization and numerical stability of Gaussian elimination algorithm, but for simplicity we temporarily ignore this issue.

- Gaussian elimination requires about $n^3/3$ paired additions and multiplications, so model serial time as

$$T_1 = \gamma \frac{n^3}{3}$$

where γ is time required for multiply-add operation.

- About $n^2/2$ divisions also required, but we ignore this lower-order term.
Gaussian elimination has general form of triple-nested loop in which entries of L and U overwrite those of A

\[
\begin{align*}
\text{for } i \text{ } & \text{for } j \text{ } & \text{for } k \\
\quad & \text{for } i \text{ } & \text{for } j \\
\quad & \text{for } i \text{ } & \text{for } k \\
\quad & \text{for } k \\
& a_{ij} = a_{ij} \cdot \left(\frac{a_{ik}}{a_{kk}} \right) a_{kj} \\
\end{align*}
\]

Indices i, j, and k of for loops can be taken in any order, for total of $3! = 6$ different ways of arranging loops
Loop Orderings for Gaussian Elimination

- Different loop orders have different memory access patterns, which may cause their performance to vary widely.

- **Right-looking** orderings (loop over k is outermost) perform updates to the trailing matrix (update all a_{ij} for $i, j \geq k$) eagerly.

- **Left-looking** orderings (loop over k is innermost) update the trailing matrix lazily (updates to a_{ij} done only when all entries $a_{i'j'}$ with $\min(i', j') < \min(i, j)$ have been updated).

- Right-looking ordering achieve better read-locality (the same divisor and outer-product vectors are reused).

- Left-looking ordering achieve better write-locality (entries of A may be changed in memory only once).
Gaussian Elimination Algorithm

- Right-looking form of Gaussian elimination

 for $k = 1$ to $n - 1$

 for $i = k + 1$ to n

 $\ell_{ik} = a_{ik} / a_{kk}$

 end

 for $j = k + 1$ to n

 for $i = k + 1$ to n

 $a_{ij} = a_{ij} - \ell_{ik} a_{kj}$

 end

 end

 end

- Multipliers ℓ_{ik} computed outside inner loop for greater efficiency
Parallel Algorithm

Partition

- For $i, j = 1, \ldots, n$, fine-grain task (i, j) stores a_{ij} and computes and stores

 $$
 \begin{cases}
 u_{ij}, & \text{if } i \leq j \\
 \ell_{ij}, & \text{if } i > j
 \end{cases}
 $$

 yielding 2-D array of n^2 fine-grain tasks

Communicate

- Broadcast entries of A vertically to tasks below
- Broadcast entries of L horizontally to tasks to right
Fine-Grain Tasks and Communication
Fine-Grain Parallel Algorithm

for $k = 1$ to $\min(i, j) - 1$

recv broadcast of a_{kj} from task (k, j) { vert bcast }

recv broadcast of ℓ_{ik} from task (i, k) { horiz bcast }

$a_{ij} = a_{ij} - \ell_{ik} a_{kj}$ { update entry }

end

if $i \leq j$ then

broadcast a_{ij} to tasks (k, j), $k = i + 1, \ldots, n$ { vert bcast }

else

recv broadcast of a_{jj} from task (j, j) { vert bcast }

$\ell_{ij} = a_{ij} / a_{jj}$ { multiplier }

broadcast ℓ_{ij} to tasks (i, k), $k = j + 1, \ldots, n$ { horiz bcast }

end
Agglomeration

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- 2-D: combine $k \times k$ subarray of fine-grain tasks to form each coarse-grain task, yielding $(n/k)^2$ coarse-grain tasks

- 1-D column: combine n fine-grain tasks in each column into coarse-grain task, yielding n coarse-grain tasks

- 1-D row: combine n fine-grain tasks in each row into coarse-grain task, yielding n coarse-grain tasks
2-D Agglomeration

\[
\begin{array}{ccc}
\begin{array}{ccc}
a_{11} & a_{12} & u_{12} \\
u_{11} & & \\
a_{21} & a_{22} & u_{22} \\
\ell_{21} & & \\
\end{array} & \begin{array}{ccc}
a_{13} & a_{14} & u_{14} \\
u_{13} & & \\
a_{23} & a_{24} & u_{24} \\
\ell_{23} & & \\
\end{array} & \begin{array}{ccc}
a_{15} & a_{16} & u_{16} \\
u_{15} & & \\
a_{25} & a_{26} & u_{26} \\
\ell_{25} & & \\
\end{array}
\end{array}
\]

\[
\begin{array}{ccc}
\begin{array}{ccc}
a_{31} & a_{32} & u_{32} \\
\ell_{31} & & \\
a_{41} & a_{42} & u_{42} \\
\ell_{41} & & \\
\end{array} & \begin{array}{ccc}
a_{33} & a_{34} & u_{34} \\
\ell_{33} & & \\
a_{43} & a_{44} & u_{44} \\
\ell_{43} & & \\
\end{array} & \begin{array}{ccc}
a_{35} & a_{36} & u_{36} \\
\ell_{35} & & \\
a_{45} & a_{46} & u_{46} \\
\ell_{45} & & \\
\end{array}
\end{array}
\]

\[
\begin{array}{ccc}
\begin{array}{ccc}
a_{51} & a_{52} & u_{52} \\
\ell_{51} & & \\
a_{61} & a_{62} & u_{62} \\
\ell_{61} & & \\
\end{array} & \begin{array}{ccc}
a_{53} & a_{54} & u_{54} \\
\ell_{53} & & \\
a_{63} & a_{64} & u_{64} \\
\ell_{63} & & \\
\end{array} & \begin{array}{ccc}
a_{55} & a_{56} & u_{56} \\
\ell_{55} & & \\
a_{65} & a_{66} & u_{66} \\
\ell_{65} & & \\
\end{array}
\end{array}
\]
Blocked LU factorization

\[A \]
Blocked LU factorization
Blocked LU factorization
Blocked LU factorization
Coarse-Grain 2-D Parallel Algorithm

for $k = 1$ to $n - 1$
 broadcast $\{a_{kj} : j \in\text{mycols}, j \geq k\}$ in processor column
 if $k \in\text{mycols}$ then
 for $i \in\text{myrows}, i > k$
 $\ell_{ik} = a_{ik}/a_{kk}$ \hspace{1cm} \{ multipliers \}
 end
 end
 broadcast $\{\ell_{ik} : i \in\text{myrows}, i > k\}$ in processor row
 for $j \in\text{mycols}, j > k$
 for $i \in\text{myrows}, i > k$
 $a_{ij} = a_{ij} - \ell_{ik} a_{kj}$ \hspace{1cm} \{ update \}
 end
 end
end
1-D Column Agglomeration

\[
\begin{array}{cccccccc}
 a_{11} & u_{11} & \cdots & a_{16} & u_{16} \\
 a_{21} & \ell_{21} & \cdots & a_{26} & u_{26} \\
 a_{31} & \ell_{31} & \cdots & a_{36} & u_{36} \\
 a_{41} & \ell_{41} & \cdots & a_{46} & u_{46} \\
 a_{51} & \ell_{51} & \cdots & a_{56} & u_{56} \\
 a_{61} & \ell_{61} & \cdots & a_{66} & u_{66} \\
\end{array}
\]
1-D Row Agglomeration

LU Factorization
Parallel Algorithms for LU
Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Michael T. Heath and Edgar Solomonik
Parallel Numerical Algorithms
Mapping

Map

- 2-D: assign \((n/k)^2/p\) coarse-grain tasks to each of \(p\) processors treating target network as 2-D mesh, using
 - blocked mapping (aggregating into larger blocks)
 - cyclic mapping of blocks, yielding *block-cyclic* layout

- 1-D: assign \(n/p\) coarse-grain tasks to each of \(p\) processors treating target network as 1-D mesh, using
 - blocked mapping (aggregating into panels)
 - cyclic mapping of rows/cols, yielding *row-cyclic* or *column-cyclic* layout
1-D Column Agglomeration with Cyclic Mapping

LU Factorization
Parallel Algorithms for LU
Partial Pivoting
Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Michael T. Heath and Edgar Solomonik
Parallel Numerical Algorithms
Matrix rows need not be broadcast vertically, since any given column is contained entirely in only one process.

But there is no parallelism in computing multipliers or updating any given column.

Horizontal broadcasts still required to communicate multipliers for updating.
Coarse-Grain 1-D Column Parallel Algorithm

\begin{verbatim}
for k = 1 to n - 1
 if k \in mycols then
 for i = k + 1 to n
 \ell_{ik} = a_{ik}/a_{kk} \quad \{ multipliers \}
 end
end

broadcast \{ \ell_{ik} : k < i \leq n \} \quad \{ broadcast \}

for j \in mycols, j > k
 for i = k + 1 to n
 a_{ij} = a_{ij} - \ell_{ik} a_{kj} \quad \{ update \}
end
end
end
\end{verbatim}
1-D Row Agglomeration with Cyclic Mapping
1-D Row Agglomeration

- Multipliers need not be broadcast horizontally, since any given matrix row is contained entirely in only one process.
- But there is no parallelism in updating any given row.
- Vertical broadcasts still required to communicate each row of matrix to processors below it for updating.
Coarse-Grain 1-D Row Parallel Algorithm

for $k = 1$ to $n - 1$
 broadcast $\{a_{kj} : k \leq j \leq n\}$ \{ broadcast \}
 for $i \in \text{myrows}, i > k,$
 $\ell_{ik} = a_{ik}/a_{kk}$ \{ multipliers \}
 end
 for $j = k + 1$ to n
 for $i \in \text{myrows}, i > k,$
 $a_{ij} = a_{ij} - \ell_{ik} a_{kj}$ \{ update \}
 end
 end
end
Block-Cyclic LU Factorization

\[
\begin{array}{cccc}
8 & 8 & 8 & 8 \\
8 & 8 & 8 & 8 \\
8 & 8 & 8 & 8 \\
8 & 8 & 8 & 8 \\
\end{array}
\]
Block-Cyclic LU Factorization
Block-Cyclic LU Factorization
Block-Cyclic LU Factorization

\[S = A - LU \]
Performance Enhancements

- Each processor becomes idle as soon as its last row and column are completed.

- With block mapping, in which each processor holds contiguous block of rows and columns, some processors become idle long before overall computation is complete.

- Block mapping also yields unbalanced load, as computing multipliers and updates requires successively less work with increasing row and column numbers.

- Cyclic or reflection mapping improves both concurrency and load balance.
Performance Enhancements

Performance can also be enhanced by overlapping communication and computation

- At step k, each processor completes updating its portion of remaining unreduced submatrix before moving on to step $k + 1$

- Broadcast of each segment of row $k + 1$, and computation and broadcast of each segment of multipliers for step $k + 1$, could be initiated as soon as relevant segments of row $k + 1$ and column $k + 1$ have been updated by their owners, before completing remainder of their updating for step k

- This *look-ahead* strategy enables other processors to start working on next step earlier than they otherwise could
Execution Time for 1-D Agglomeration

- With 1-D column agglomeration, each processor factorizes panels of \(b \) columns, then broadcasts them to perform the trailing matrix update.

- While work-efficient \(W_p = \Theta(n^3) \), the concurrency in computational cost is constrained by panel factorization

\[
F_p(n, b) = \Theta((n/b)nb^2 + n^3/p)
\]

so we need \(b < n/p \) to maintain \(F_p(n, b) = \Theta(n^3/p) \).

- The overall execution time is given by

\[
T_p(n, b) = \Theta\left(\frac{n}{b}T_p^{\text{broadcast}}(nb) + \gamma F_p(n, b)\right)
\]

- It is generally minimized by picking \(b = \Theta(n/p) \)

\[
T_p(n, b) = \Theta(\alpha p \log p + \beta n^2 + \gamma n^3/p)
\]
Execution Time for 2-D Agglomeration

- With 2-D agglomeration and block-cyclic mapping, a processor factorizes a $b \times b$ diagonal block, broadcasts it to a column and row of processors, which update the panels and broadcast them to perform the trailing matrix updates.

- The computational cost is constrained by lack of concurrency in the diagonal:

$$F_p(n, b) = O(n^3/p + nb^2)$$

- The overall execution time is given by:

$$T_p(n, b) = \Theta\left((n/b)(T^{\text{bcast}}_{\sqrt{p}}(b^2) + T^{\text{bcast}}_{\sqrt{p}}(nb/\sqrt{p})) + \gamma F_p(n, b)\right)$$

- It is generally minimized by picking $b = n/\sqrt{p}$

$$T_p(n) = T_p(n, n/\sqrt{p}) = \Theta(\alpha \sqrt{p} \log p + \beta n^2 / \sqrt{p} + \gamma n^3 / p)$$
Scalability for 2-D Agglomeration

- Cannon’s algorithm for matrix multiplication (2-D agglomeration), could achieve strong scaling speed-up $p_s = O((\gamma/\alpha)n^2)$ and unconditional weak scaling

- The SUMMA algorithm, which was based on broadcasts, achieved slightly inferior scaling due to a $\Theta(\log(p))$ term on the latency cost

- The execution time of 2-D agglomeration for LU is the same as of SUMMA, so the efficiency and scaling characteristics are the same

- On the other hand, it is not possible to achieve strong scaling to $O((\gamma/\alpha)n^3/\log(n))$ processors as the depth of the usual LU algorithm is $D = n$, meaning the maximum speed-up is $p_s = \Theta(\max_p S_p) = O(Q_1/D) = O(n^2)$
Partial Pivoting

- Row ordering of A is irrelevant in system of linear equations.

- Partial pivoting takes rows in order of largest entry in magnitude of leading column of remaining unreduced matrix.

- This choice ensures that multipliers do not exceed 1 in magnitude, which reduces amplification of rounding errors.

- In general, partial pivoting is required to ensure existence and numerical stability of LU factorization.
Partial pivoting yields factorization of form

\[PA = LU \]

where \(P \) is permutation matrix

If \(PA = LU \), then system \(Ax = b \) becomes

\[PAx = LUx = Pb \]

which can be solved by forward-substitution in lower triangular system \(Ly = Pb \), followed by back-substitution in upper triangular system \(Ux = y \)
Partial pivoting complicates parallel implementation of Gaussian elimination and significantly affects potential performance.

With 2-D algorithm, pivot search is parallel but requires communication within processor column ($S = \Omega(n \log(p))$) and inhibits overlap.

With 1-D column algorithm, pivot search requires no communication but is purely serial.

Once pivot is found, index of pivot row must be communicated to other processors, and rows must be explicitly or implicitly interchanged in each process.
Because of negative effects of partial pivoting on parallel performance, various alternatives have been proposed that limit pivot search:

- **tournament pivoting** (perform tree of partial pivoting on different subsets of matrix rows, selecting b at a time)
- **threshold pivoting** (use local rows as pivots if the diagonal entries are within threshold of column norm)
- **pairwise pivoting** (eliminate $n(n - 1)/2$ entries by as many 2-by-2 transformations $L_i P_i$, where L_i is unit-lower triangular and P_i is a permutation matrix, applied to appropriate row pairs)

Stability generally slightly worse in theory and for particularly hard test-cases.

Better stability without worrying about pivoting may be achieved via QR factorization.
If explicit replication of storage is allowed, then lower communication volume is possible.

As with matrix multiplication, algorithms that leverage all available memory to reduce communication cost to the maximum extent possible.

If sufficient memory is available, then these algorithms can achieve provably optimal communication.
References

References