Parallel Numerical Algorithms
Chapter 6 – Structured and Low Rank Matrices
Section 6.3 – Matrix Completion

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512
Outline

1 Introduction

2 Alternating Least Squares
 - Quadratic Optimization
 - Parallel ALS

3 Coordinate Descent
 - Coordinate Descent
 - Cyclic Coordinate Descent

4 Gradient Descent
 - Gradient Descent
 - Stochastic Gradient Descent
 - Parallel SGD
The Matrix Completion Problem

Given a subset of entries

\[\Omega \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\} \]

of the entries of matrix \(A \in \mathbb{R}^{m \times n} \), seek rank-\(k \) approximation

\[
\arg\min_{W \in \mathbb{R}^{m \times k}, H \in \mathbb{R}^{n \times k}} \sum_{(i,j) \in \Omega} \left(a_{ij} - \sum_l w_{il} h_{jl} \right)^2 + \lambda \left(\|W\|_F + \|H\|_F \right)
\]

- Problems of these type studied in sparse approximation
- \(\Omega \) may be randomly selected sample subset
- Methods for this problem are typical of numerical optimization and machine learning
Alternating least squares (ALS) fixes \mathbf{W} and solves for \mathbf{H} then vice versa until convergence

- Each step improves approximation, convergence to a minimum expected given satisfactory starting guess
- We have a quadratic optimization problem

$$\arg\min_{\mathbf{W} \in \mathbb{R}^{m \times k}} \sum_{i,j \in \Omega} \left(a_{ij} - \sum_{l} w_{il} h_{jl} \right)^2 + \lambda \|\mathbf{W}\|_F$$

- The optimization problem is independent for rows of \mathbf{W}
- Letting $\mathbf{w}_i = w_{i\star}$, $\mathbf{h}_i = h_{i\star}$, $\Omega_i = \{j : (i,j) \in \Omega\}$, seek

$$\arg\min_{\mathbf{w}_i \in \mathbb{R}^k} \sum_{j \in \Omega_i} \left(a_{ij} - \mathbf{w}_i \mathbf{h}_j^T \right)^2 + \lambda \|\mathbf{w}_i\|_2$$
ALS: Quadratic Optimization

Seek minimizer w_i for quadratic vector equation

$$f(w_i) = \sum_{j \in \Omega_i} \left(a_{ij} - w_i h_j^T \right)^2 + \lambda \| w_i \|$$

- Differentiating with respect to w_i gives
 $$\frac{\partial f(w_i)}{\partial w_i} = 2 \sum_{j \in \Omega_i} h_j^T \left(w_i h_j^T - a_{ij} \right) + 2 \lambda w_i = 0$$

- Rotating $w_i h_j^T = h_j w_i^T$ and defining $G^{(i)} = \sum_{j \in \Omega_i} h_j^T h_j$,

$$\left(G^{(i)} + \lambda I \right) w_i^T = \sum_{j \in \Omega_i} h_j^T a_{ij}$$

which is a $k \times k$ symmetric linear system of equations
ALS: Iteration Cost

For updating each w_i, ALS is dominated in cost by two steps

1. $G^{(i)} = \sum_{j \in \Omega_i} h_j^T h_j$
 - dense matrix-matrix product
 - $O(|\Omega_i| k^2)$ work
 - logarithmic depth

2. Solve linear system with $G^{(i)} + \lambda I$
 - dense symmetric $k \times k$ linear solve
 - $O(k^3)$ work
 - typically $O(k)$ depth

Can do these for all m rows of W independently
Parallel ALS

Let each task optimize a row w_i of W

- Need to compute $G^{(i)}$ for each task
- Specific subset of rows of H needed for each $G^{(i)}$
- Tasks execution is embarassingly parallel if all of H stored on each processor
Memory-Constrained Parallel ALS

May not have enough memory to replicate H on all processors

- Communication required and pattern is data-dependent
- Could rotate rows of H along a ring of processors
- Each processor computes contributions to the $G^{(i)}$ it owns
- Requires $\Theta(p)$ latency cost for each iteration of ALS
Updating a Single Variable

Rather than whole rows w_i solve for elements of W, recall

$$\arg\min_{W \in \mathbb{R}^{m \times k}} \sum_{(i,j) \in \Omega} \left(a_{ij} - \sum_l w_{il} h_{jl} \right)^2 + \lambda \|W\|_F$$

- **Coordinate descent** finds the best μ by optimizing w_{it}

$$\mu = \arg\min_{w_{it}} \sum_{j \in \Omega_i} \left(a_{ij} - w_{it} h_{jt} - \sum_{l \neq t} w_{il} h_{jl} \right)^2 + \lambda w_{it}^2$$

- The solution is given by

$$\mu = \frac{\sum_{j \in \Omega_i} h_{jt} \left(a_{ij} - \sum_{l \neq t} w_{il} h_{jl} \right)}{\lambda + \sum_{j \in \Omega_i} h_{jt}^2}$$
Coordinate Descent

For \(\forall (i, j) \in \Omega \) compute elements \(r_{ij} \) of

\[
R = A - WH^T
\]

so that we can optimize via

\[
\mu = \frac{\sum_{j \in \Omega_i} h_{jt} \left(a_{ij} - \sum_{l \neq t} w_{il} h_{jl} \right)}{\lambda + \sum_{j \in \Omega_i} h_{jt}^2} = \frac{\sum_{j \in \Omega_i} h_{jt} \left(r_{ij} + w_{it} h_{jt} \right)}{\lambda + \sum_{j \in \Omega_i} h_{jt}^2}
\]

after which we can update \(R \) via

\[
r_{ij} \leftarrow r_{ij} - (\mu - w_{it}) h_{jt} \quad \forall j \in \Omega_i
\]

both using \(O(|\Omega_i|) \) operations
Cyclic Coordinate Descent (CCD)

- Updating w_i costs $O(|\Omega_i|k)$ operations with coordinate descent rather than $O(|\Omega_i|k^2 + k^3)$ operations with ALS.
- By solving for all of w_i at once, ALS obtains a more accurate solution than coordinate descent.
- Coordinate descent with different update orderings:
 - *Cyclic coordinate descent (CCD)* updates all columns of W then all columns of H (ALS-like ordering).
 - *CCD++* alternates between columns of W and H.
 - All entries within a column can be updated concurrently.
Parallel CCD++

Yu, Hsieh, Si, and Dhillon 2013 propose using a row-blocked layout of H and W

- They keep track of a corresponding block row and block column of A and R on each processor (using twice the minimal amount of memory)

- Every column update in CCD++ is then fully parallelized, but an allgather of each column is required to update R

- The complexity of updating all of W and all of H is then

$$O(|\Omega| k/P \cdot \gamma + (m+n)k \cdot \beta + k \log p \cdot \alpha)$$
Gradient-Based Update

ALS minimizes w_i, gradient descent methods only improve it.

- Recall that we seek to minimize:
 \[
 f(w_i) = \sum_{j \in \Omega_i} \left(a_{ij} - w_i h_j^T \right)^2 + \lambda \| w_i \|
 \]
 and use the partial derivative:
 \[
 \frac{\partial f(w_i)}{\partial w_i} = 2 \sum_{j \in \Omega_i} h_j^T \left(w_i h_j^T - a_{ij} \right) + 2\lambda w_i = -2 \sum_{j \in \Omega_i} r_{ij} h_j + 2\lambda w_i
 \]

- **Gradient descent** method updates:
 \[
 w_i = w_i - \eta \frac{\partial f(w_i)}{\partial w_i}
 \]
 where parameter η is our step-size.
Stochastic Gradient Descent (SGD)

Stochastic gradient descent (SGD) performs fine-grained updates based on a component of the gradient.

- Again the full gradient is

$$\frac{\partial f(w_i)}{\partial w_i} = -2 \sum_{j \in \Omega_i} r_{ij} h_j + 2\lambda w_i$$

- SGD selects random $(i, j) \in \Omega$ and updates w_i using h_j

$$w_i \leftarrow w_i - \eta(\lambda w_i / |\Omega_i| - r_{ij} h_j)$$

- SGD then updates $r_{ij} = a_{ij} - w_i^T h_j$

- Each update costs $O(k)$ operations
Asynchronous SGD

Parallelizing SGD is easy aside from ensuring concurrent updates do not conflict

- Asynchronous shared-memory implementations of SGD are popular and achieve high performance
- For sufficiently small step-size, inconsistencies among updates (e.g. duplication) is not problematic statistically
- Asynchronicity can slow down convergence
Blocked SGD

Distributed blocking for SGD is harder

- Associate a task with updates on a block
- Can define $\sqrt{p} \times \sqrt{p}$ grid of blocks of dimension $m/\sqrt{p} \times n/\sqrt{p}$
- Diagonal/superdiagonals/subdiagonals of blocks can be updated concurrently
- Assuming $\Theta(|\Omega|/p)$ updates are performed on each block, the execution time for $|\Omega|$ updates is

$$O(|\Omega|k/\sqrt{p} \cdot \gamma + \min(m, n)k \cdot \beta + \sqrt{p} \log p \cdot \alpha)$$

References

