
CS 598: Communication Cost Analysis of Algorithms
Lecture 10: FFT algorithms and an introduction to communication lower

bounds

Edgar Solomonik

University of Illinois at Urbana-Champaign

September 26, 2016

Fast Fourier Transform DFT review

DFT matrix and convolutions

For any n, let ωn = e−2πi/n, a DFT matrix of dimension n is given by

∀j , k ∈ [0, n − 1] Dn(j , k) = ωjk
n

for example D4 =

1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

A convolution takes as input vectors a and b and computes vector c

∀k ∈ [0, n − 1] c(k) =
k∑

j=0

a(j)b(k − j)

It can be computed via the DFT

c = D−1
n [(Dna)� (Dnb)]

where � is an elementwise product

Fast Fourier Transform Radix-2 FFT algorithm

Radix-2 Fast Fourier Transform (FFT)

We now look at how to apply the DFT via the FFT algorithm

intuitively, we can expect to compute the DFT quickly since Dn is so nicely
structured, a single root of unity parameter ωn can be used to represent it

consider b = Dna, we have

∀j ∈ [0, n − 1] b(j) =
n−1∑
k=0

ωjk
n a(k)

our goal is to find a recursive algorithm, that expresses the DFT as two
DFTs of dimension n/2, with a different root of unity ωn/2

ωn/2 = ω2
n, so we separate the summands into odds and evens

∀j ∈ [0, n − 1] b(j) =

n/2−1∑
k=0

ωj(2k)
n a2k +

n/2−1∑
k=0

ωj(2k+1)
n a(2k + 1)

=

n/2−1∑
k=0

ωjk
n/2a2k + ωj

n

n/2−1∑
k=0

ωjk
n/2a(2k + 1)

Fast Fourier Transform Radix-2 FFT algorithm

Radix-2 Fast Fourier Transform (FFT), contd.

We can note that, given

∀j ∈ [0, n − 1] b(j) =

n/2−1∑
k=0

ωjk
n/2a(2k) + ωj

n

n/2−1∑
k=0

ωjk
n/2a(2k + 1)

the summations for b(j) and b(j + n/2) are closely related, ∀j ∈ [0, n/2− 1]

b(j + n/2) =

n/2−1∑
k=0

ω
(j+n/2)k
n/2 a(2k) + ωj+n/2

n

n/2−1∑
k=0

ω
(j+n/2)k
n/2 a(2k + 1)

we now note ω
(j+n/2)k
n/2 = ωjk

n/2 since (ω
n/2
n/2)k = 1k = 1, so

∀j ∈ [0, n/2− 1] b(j + n/2) =

n/2−1∑
k=0

ωjk
n/2a(2k)− ωj

n

n/2−1∑
k=0

ωjk
n/2a(2k + 1)

where we additionally use ω
n/2
n = −1.

Fast Fourier Transform Radix-2 FFT algorithm

Radix-2 Fast Fourier Transform (FFT), contd.

Each of these two summation can be done recursively with an FFT

lets vectors u and v be these two FFTs

∀j ∈ [0, n/2− 1] u(j) =

n/2−1∑
k=0

ω
(j+n/2)k
n/2 a(2k)

∀j ∈ [0, n/2− 1] v(j) =

n/2−1∑
k=0

ω
(j+n/2)k
n/2 a(2k + 1)

we can make these two recursive calls simultaneously and without any work

we then scale using ”twiddle factors” z(j) = v(j) · ωj
n

it then suffices to combine the vectors as follows

b =

[
u + z
u − z

]
notice that the way we combine them can be seen as an FFT of dimension 2

b =

[
b1
b2

]
= vec

([
b1 b2

])
= vec

([
u z

] [1 1
1 −1

])
= vec

([
u z

]
D2

)

Fast Fourier Transform Communication cost of the FFT algorithm

Cache complexity of radix-2 FFT

We can now analyze the cache complexity of this FFT algorithm

lets consider γ to be the cost per operation, and ν to be the inverse
memory bandwidth

at every recursive level we have a linear cost of applying twiddle
factors, yielding the recurrence

TFFT2(n,H) = 2TFFT2(n/2,H) + O(n · ν + n · γ)

once the problem fits in cache (size H), we incur no more bandwidth
cost

TFFT2(n < H,H) = 2TFFT2(n/2,H) + O(n · γ) = O(n log(n) · γ)

therefore the total cost (assuming n > H) is

TFFT2(n,H) = O(n log(n/H) · ν + n log n · γ)

for n� H, this is flop to byte ratio approaches 1

Fast Fourier Transform Radix-n1 FFT algorithm

Lowering the cost of twiddle factors

We can subdivide an FFT not just into two FFTs, but into many, then
combine the result, with... more FFTs!

consider any factorization n1n2 = n

we can subdivide the FFT into n1 FFTs of dimension n2 then
combine them with n2 FFTs of dimension n1 as follows

c(i2n1 + i1) =

n1∑
j1=0

ωi1j1
n1

[(n2∑
j2=0

ωi2j2
n2 a(j1n2 + j2)

)
ωi1j2
n

]
essentially we have separated the columns of the DFT matrix with
stride n1 and expressed the sum in terms of the root of unity
ωn/n1 = ωn2

the factors ωi1j2
n correspond to the twiddle factors by which we

multiplied the FFT of the odd subsequence of a in the radix-2
algorithm

Fast Fourier Transform Radix-n1 FFT algorithm

Correctness of Radix-n1 FFT

Lets see why this equation is true

c(i2n1 + i1) =
n1∑

j1=0

ωi1j1
n1

[(n2∑
j2=0

ωi2j2
n2 a(j1n2 + j2)

)
ωi1j2
n

]
we can show correctness by pushing the summations to the back

c(i2n1 + i1) =

n1∑
j1=0

n2∑
j2=0

ωi1j1
n1 ω

i1j2
n ωi2j2

n2 a(j1n2 + j2)

=

n1∑
j1=0

n2∑
j2=0

ωi1j1n2
n ωi1j2

n ωi2j2n1
n a(j1n2 + j2)

=
n1∑

j1=0

n2∑
j2=0

ωi1j1n2+i1j2+i2j2n1
n a(j1n2 + j2)

=
n1∑

j1=0

n2∑
j2=0

ω(i2n1+i1)(j1n2+j2)
n a(j1n2 + j2)

Q: why is an extra factor of ωi2n1j1n2 not a problem?

Fast Fourier Transform Radix-n1 FFT algorithm

Recursive structure of Radix-n1 FFT
Lets see how we can apply this equation

c(i2n1 + i1) =
n1∑

j1=0

ωi1j1
n1

[(n2∑
j2=0

ωi2j2
n2 a(j1n2 + j2)

)
ωi1j2
n

]

first lets decompose a into subvectors of length n2, a =

 a1
...
an1

then we apply the FFT recursively to each of them, obtaining vi1 = Dn2ai1

then we apply the twiddle factors to every element ui1(j2) = vi1(j2)ωi1j2
n

then we apply the FFT recursively on different subvectors c1
...
cn1

 = vec
([
u1 · · · un1

]
Dn1

)
Q: sanity check, Dn1 is symmetric, so do we compute Dn1ui1 recursively?

A: no, we do vi2Dn1 = (Dn1v
T
i2

)T where
[
v1 · · · vn2

]T
=
[
u1 · · · un1

]

Fast Fourier Transform Radix-n1 FFT algorithm

Cache oblivious FFT

We can get a cache-oblivious FFT algorithm by choosing n1 = n2 =
√
n

we now get a recurrence

TFFT(n,H) = 2
√
nTFFT(

√
n) + O(n · γ + n · ν)

once n < H, we incur no more bandwidth cost, we get to this after
logH(n) recursive calls, obtaining a total cost of

TFFT(n,H) = O(n logH(n) · ν + n log(n) · γ)

this improves over the radix-2 case, since

logH(n) = log2(n)/ log2(H) ≤ log2(n/H) = log2(n)− log2(H)

Fast Fourier Transform Radix-n1 FFT algorithm

FFT in BSP

Lets assume n ≥ P2, and again do radix-
√
n FFT

the assumption n ≥ P2 is similar to what our allgather algorithms
assumed (each processor starts with ≥ P different elements)

each processor computes
√
n/P FFTs of dimension

√
n with their

local data

the data is transposed (all-to-all)

each processor computes
√
n/P FFTs of dimension

√
n with their

local data

TBSP
FFT (n,P) = α + n/P · β

Q: could we achieve the same cost if we allow only point-to-point
messages?

A: no, all-to-all has cost Tα−β
FFT (n,P) = α · log2(P) + n log2(P)/P · β

or Tα−β
FFT (n,P) = α · (P − 1) + n/P · β

Administrative interlude

Short pause

Communication Lower Bounds Historical results

Introduction to communication lower bounds

A brief history of pioneering work

Floyd 1972: for large cache lines L = Θ(H), matrix transposition has
cost O(n2 log(n) · β)

Jiawei and Kung 1981, pebbling lower bound

model communication as placing pebbles on a dependency graph of an
algorithm
work with L = 1 (only consider H)
lower bounds for matrix-matrix multiplication, FFT, stencil
computation, odd-even sort

Aggarwal and Vitter 1988, lower bounds with any L,H

communication lower bounds for general permutation networks
lower bounds for transposition, FFT, and comparison-based sorting

Communication Lower Bounds General lower bound arguments

Lower bounds by partitioning memory operations

Pebbling bounds employ the following general argument

consider the sequence of loads and stores (memory-cache) transfers
computed by a program
the length of the sequence is the bandwidth cost Q
partition the sequence into parts of size H
upper-bound the amount of useful work that can be done between the
beginning and end of this sequence
H bounds the number of inputs we read from memory and outputs
we write to cache
Q: how many other inputs are available during the execution of this
sequence?
A: at the beginning of the sequence we have up to H inputs in cache,
and at the end up to H outputs
with partitioning, all we need is a bound falg(H) on how much useful
computation can be done with 3H inputs + outputs
if the total amount of computation is F , Q ≥ FH/falg(H)

Communication Lower Bounds General lower bound arguments

Lower bounds by partitioning computation

We can also take the dual view

we are given an algorithm that must perform F operations

we need to prove that the given 3H inputs and outputs at most
falg(H) of the computation can be done

to prove this we generally need some assumptions to guarantee that
outputs cannot be discarded
its typical to assume that the F operations are not recomputed
(outputs are not regenerated)
we can also represent some algorithms with dependency graphs (DAGs)
with F vertices

consider any execution schedule (ordering) of the F operations

for each subsequence of size falg(H), we can show that H loads or
stores are required

we then get the desired bound Q ≥ FH/falg(H)

Communication Lower Bounds Matrix multiplication communication lower bound

Bounding work in matrix multiplication

Consider the F = n3 products computed in square matrix multiplication

additions are tricky, we don’t want to impose specific summation trees
consider any G of the products C (i , j)← A(i , k) · B(k , j)
the d = 3 Loomis-Whitney theorem tells us that the number of
unique (i , k), (k , j), and (i , j) indices in G : gA, gB , and gC , satisfy

√
gA · gB · gC ≥ G

in other words, the inputs needed to compute the G entries include
gA values of A, gB values of B, and they contribute to gC different
entries of C
we can safely restrict the space of algorithms to those that do not
sum products which contribute to different entries of C
bound the size of G provided the number of inputs and outputs is at
most H

fMM(H) = max
|gA+gB+gC |≤3H

√
gA · gB · gC = H3/2

Communication Lower Bounds Matrix multiplication communication lower bound

Cache complexity lower bound for MM

Given fMM(H) = H3/2, we are essentially done

we obtain the sequential memory bandwidth lower bound

Qseq-MM(n,H) ≥ n3H/fMM(H) =
n3√
H

in the parallel case, one of P processors needs to perform n3 of the
products, so

Qpar-MM(n,H,P) ≥ n3

P
√
H

Communication Lower Bounds Matrix multiplication communication lower bound

Interprocessor communication lower bound for MM

We can also use fMM to get lower bounds on interprocessor
communication

given that each processor has M memory, fMM(M) tells us how much
computation can be done with M inputs/outputs
we can assume no processor has more than 2n2/P inputs at the start
of execution and n2/P outputs at the end, so

Wpar-MM(n,H,M,P) ≥ n3M/fMM(M)− 3n2/P =
n3

P
√
M
− 3n2/P

for c ∈ [1,P1/3] we get

Wpar-MM(n,H, cn2/P,P) = Ω

(
n2√
cP

)
restricting the amount of work done to n3/P, gets us

Wpar-MM(n,H,P) = Ω

(
n2

P2/3

)

	Fast Fourier Transform
	DFT review
	Radix-2 FFT algorithm
	Communication cost of the FFT algorithm
	Radix-n1 FFT algorithm

	Administrative interlude
	Communication Lower Bounds
	Historical results
	General lower bound arguments
	Matrix multiplication communication lower bound

