CS 598: Communication Cost Analysis of Algorithms

Lecture 10: FFT algorithms and an introduction to communication lower
bounds

Edgar Solomonik

University of Illinois at Urbana-Champaign

September 26, 2016

Fast Fourier Transform DFT review

DFT matrix and convolutions

For any n, let w, = e~2™/" a DFT matrix of dimension n is given by

Vj,k €[0,n—1] D,(j, k) =

11 1 1

2 .3

for example Dy = i :)12 cwu Z
1 w? Wb W

A convolution takes as input vectors a and b and computes vector ¢
k
Vke[0,n—1] c(k)=>_a(j)b(k)
j=0

It can be computed via the DFT
¢ = D, [(Da3) © (Dyb)]

where ® is an elementwise product

Radix-2 Fast Fourier Transform (FFT)

We now look at how to apply the DFT via the FFT algorithm

@ intuitively, we can expect to compute the DFT quickly since D, is so nicely
structured, a single root of unity parameter w, can be used to represent it

@ consider b = D, a, we have
Vjeo,n—1] b(j)=> wia(k)

@ our goal is to find a recursive algorithm, that expresses the DFT as two
DFTs of dimension n/2, with a different root of unity wj/»

® Wypp = w2, so we separate the summands into odds and evens

n/2—1 n/2—1

Vielo,n—11 b(j)= > wi®ay+ Y WP Na(2k+1)
k=0 k=0
n/2—1 n/2—1

. . N
— Z w0k + Z w)ipa(2k + 1)
k=0 k=0

Radix-2 Fast Fourier Transform (FFT), contd.

We can note that, given

n/2—1 n/2—1

Vjeo,n—1] b(j)= Z 192a(2k) + o, Z pa(2k +1)

the summations for b(j) and b(j + n/2) are closely related, Vj € [0, n/2 — 1]

n/2—1 n/2—1
b(j + n/2) = wWIE D (2k) + Wit/ Z UL a(2k + 1)
k=0
we now note w(J/Z"/Q wj/2 since (w Z?;)k =1k=1, so
n/2—1 n/2—1

Vj€[0,n/2—=1] b(j+n/2)= Y wh,a(2k)—w) Z wlpa(2k +1)
k=0

where we additionally use wf/? = —1.

Radix-2 Fast Fourier Transform (FFT), contd.

Each of these two summation can be done recursively with an FFT

@ lets vectors u and v be these two FFTs

n/2—1
vielo,n/2—1] u()= > w¥s"Pa(2k)
k=0
n/2—1)
Vje0,n/2-1] v(j)= WU PKa(2k + 1)
k=0

@ we can make these two recursive calls simultaneously and without any work
@ we then scale using "twiddle factors” z(j) = v(j) - w,

@ it then suffices to combine the vectors as follows
u+z
u—z
@ notice that the way we combine them can be seen as an FFT of dimension 2

b:[gj:vec([bl bg])zvec<[u] E jl}):vec([u 2 Dy)

Cache complexity of radix-2 FFT

We can now analyze the cache complexity of this FFT algorithm
@ lets consider v to be the cost per operation, and v to be the inverse
memory bandwidth
@ at every recursive level we have a linear cost of applying twiddle
factors, yielding the recurrence

Terr2(n, H) = 2Tgrr2(n/2,H) + O(n-v +n-7)

@ once the problem fits in cache (size H), we incur no more bandwidth
cost

TFFTQ(I‘I < H, H) = 2T|:|:-|-2(n/2, H) + O(n . ’)/) = O(n Iog(n) . ’7)
o therefore the total cost (assuming n > H) is
Trrr2(n, H) = O(nlog(n/H) - v + nlogn -)

e for n> H, this is flop to byte ratio approaches 1

Fast Fourier Transform Radix-n; FFT algorithm

Lowering the cost of twiddle factors

We can subdivide an FFT not just into two FFTs, but into many, then
combine the result, with... more FFTs!

@ consider any factorization nijny = n

@ we can subdivide the FFT into n; FFTs of dimension ny then
combine them with ny FFTs of dimension n; as follows

c(izm + i) Z wil [(> wika(im +j2))wzﬂ2]

j1=0 J2=0

@ essentially we have separated the columns of the DFT matrix with
stride n; and expressed the sum in terms of the root of unity
Wn/ny = Wny

o the factors w2 correspond to the twiddle factors by which we
multiplied the FFT of the odd subsequence of a in the radix-2

algorithm

Correctness of Radix-n; FFT

Lets see why this equation is true

c(iam + ir) E wih {(> wia(jim +J2)) 'm}
J1=0 j»=0
we can show correctness by pushing the summations to the back
n ny
clom + 1) = 33 wihwiewia(iin, +)
J1=0j2=0
n ny
— E E ng1n2ngzw:7zjzn1a(jln2 +_j2)
71=0j2=0
n ny
— § E w211”2+’1”+’212”13(_jln2 +j2)
71=0j2=0
n n
_ E :2 :w,(7:2n1+l1)(11n2+12)a(j1n2 +j2)

Jj1=0j2=0

Q: why is an extra factor of w?™/1" not a problem?

Fast Fourier Transform Radix-n; FFT algorithm

Recursive structure of Radix-n; FFT

Lets see how we can apply this equation
/2n1 + /1 Zwlm |:(Zwlzjz a(jrno +J2)) 11J2:|
1=0 Jj»=0

ai

first lets decompose a into subvectors of length ny, a =

an,

then we apply the FFT recursively to each of them, obtaining v;, = Dy, a;

then we apply the twiddle factors to every element u; (j») = v;, (Jo)wi/2

then we apply the FFT recursively on different subvectors
(4]

=vec([tn -+ up] D)
Cy

Q: sanity check, D,, is symmetric, so do we compute D, u; recursively?

@ A:no, we do v;,Dp, = (Dp, v)" where [- vnz]T =[m - up]

Cache oblivious FFT

We can get a cache-oblivious FFT algorithm by choosing ny = np = /n

@ we now get a recurrence

Teer(n, H) = 2v/nTeer(v/n) + O(n -~y +n-v)

@ once n < H, we incur no more bandwidth cost, we get to this after
log(n) recursive calls, obtaining a total cost of

Trer(n, H) = O(nlogy(n) - v + nlog(n) - 7)
@ this improves over the radix-2 case, since

logy(n) = logy(n)/ log,(H) < logy(n/H) = logy(n) — log,(H)

FFT in BSP

Lets assume n > P2, and again do radix-\/n FFT

@ the assumption n > P2 is similar to what our allgather algorithms
assumed (each processor starts with > P different elements)

@ each processor computes /n/P FFTs of dimension \/n with their
local data

@ the data is transposed (all-to-all)

@ each processor computes v/n/P FFTs of dimension /n with their
local data

o TBP(n,P)=a+n/P-p

@ Q: could we achieve the same cost if we allow only point-to-point
messages?

@ A: no, all-to-all has cost TﬁF_TB(n, P) =« - logy(P) + nlog,(P)/P - 3
or T&(n,Py=a-(P-1)+n/P-8

Short pause

Communication Lower Bounds Historical results

Introduction to communication lower bounds

A brief history of pioneering work
o Floyd 1972: for large cache lines L = ©(H), matrix transposition has
cost O(n?log(n) - B)
@ Jiawei and Kung 1981, pebbling lower bound
e model communication as placing pebbles on a dependency graph of an

algorithm
e work with L =1 (only consider H)
e lower bounds for matrix-matrix multiplication, FFT, stencil

computation, odd-even sort
@ Aggarwal and Vitter 1988, lower bounds with any L, H

e communication lower bounds for general permutation networks
o lower bounds for transposition, FFT, and comparison-based sorting

Communication Lower Bounds General lower bound arguments

Lower bounds by partitioning memory operations

Pebbling bounds employ the following general argument

@ consider the sequence of loads and stores (memory-cache) transfers
computed by a program

@ the length of the sequence is the bandwidth cost @

@ partition the sequence into parts of size H

@ upper-bound the amount of useful work that can be done between the
beginning and end of this sequence

@ H bounds the number of inputs we read from memory and outputs
we write to cache

@ Q: how many other inputs are available during the execution of this
sequence?

@ A: at the beginning of the sequence we have up to H inputs in cache,
and at the end up to H outputs

@ with partitioning, all we need is a bound f,5(H) on how much useful
computation can be done with 3H inputs + outputs

e if the total amount of computation is F, Q > FH/f,5(H)

Communication Lower Bounds General lower bound arguments

Lower bounds by partitioning computation

We can also take the dual view

@ we are given an algorithm that must perform F operations
@ we need to prove that the given 3H inputs and outputs at most
fag(H) of the computation can be done

o to prove this we generally need some assumptions to guarantee that
outputs cannot be discarded

e its typical to assume that the F operations are not recomputed
(outputs are not regenerated)

e we can also represent some algorithms with dependency graphs (DAGs)
with F vertices

@ consider any execution schedule (ordering) of the F operations

o for each subsequence of size f,5(H), we can show that H loads or
stores are required

@ we then get the desired bound Q > FH/f,g(H)

Communication Lower Bounds Matrix multiplication communication lower bound

Bounding work in matrix multiplication

Consider the F = n® products computed in square matrix multiplication
@ additions are tricky, we don’t want to impose specific summation trees
e consider any G of the products C(i,j) < A(i, k) - B(k,J)
@ the d = 3 Loomis-Whitney theorem tells us that the number of
unique (7, k), (k,j), and (i,j) indices in G: ga, gg, and gc, satisfy

Vea-gB-8c = G

@ in other words, the inputs needed to compute the G entries include
ga values of A, gg values of B, and they contribute to g¢ different
entries of C

@ we can safely restrict the space of algorithms to those that do not
sum products which contribute to different entries of C

@ bound the size of G provided the number of inputs and outputs is at
most H

fum(H) = max VEa 88 8&c = H*/?

lga+egs+ec|<3H

Communication Lower Bounds Matrix multiplication communication lower bound

Cache complexity lower bound for MM

Given fum(H) = H3/2, we are essentially done

@ we obtain the sequential memory bandwidth lower bound

3
Queq rava(n,) 2 r°H/fu(H) = 7

@ in the parallel case, one of P processors needs to perform n® of the
products, so

n3

PVH

Qpar—MM(na H, P) Z

Communication Lower Bounds Matrix multiplication communication lower bound

Interprocessor communication lower bound for MM

We can also use fiym to get lower bounds on interprocessor
communication
@ given that each processor has M memory, fium(M) tells us how much
computation can be done with M inputs/outputs
@ we can assume no processor has more than 2n2/P inputs at the start
of execution and n?/P outputs at the end, so

n3

VM

Woar-mm(n, H, M, P) > n*M/fum(M) — 3n?/P = —3n?/P
o for ¢ € [1, P/3] we get

2

n
Woar-mm(n, H, cn? /P, P) = Q <ﬁ)

@ restricting the amount of work done to n3/P, gets us

n2
WPar—MM(n7 H’ P) =0 (/32/3>

	Fast Fourier Transform
	DFT review
	Radix-2 FFT algorithm
	Communication cost of the FFT algorithm
	Radix-n1 FFT algorithm

	Administrative interlude
	Communication Lower Bounds
	Historical results
	General lower bound arguments
	Matrix multiplication communication lower bound

