
CS 598: Communication Cost Analysis of Algorithms
Lecture 11: Communication lower bounds for the FFT and sorting algorithms

Edgar Solomonik

University of Illinois at Urbana-Champaign

September 28, 2016



Review Communication cost model

Horizontal and vertical communication cost

Lets review terminology, before we move forward with analysis:

interprocessor communication - messages between processors
executing in parallel: α, β
cache complexity - loads and stores during sequential execution
(memory bandwidth cost): ν

Below are two processors with M memory capacity and H cache size

(nu=ν)



Review Lower bounds

Communication lower bounds

Communication lower bounds provide us with insight regarding algorithms
and problems

provide optimality criterion

entail rigorous definition of problem or space of algorithms

achievable lower bounds typically carry algorithmic intuition

most often obtained by upper-bounds on amount of useful work that
can be done with a limited set of data

often but not always, this strategy does not work for algorithms which
have linear cost



Review Lower bounds

Vertical and horizontal communication lower bounds

Given an upper bound E(s) on the amount of algorithmic operations that
can be done with s data (inputs)

we can derive lower bounds on cache complexity, since only E(2H)
work can be done for every H inputs loaded to cache

(for matrix multiplication, it was necessary to also consider outputs,
fMM(s) = s3/2)

for the FFT, unlike matrix multiplication, we can ignore outputs

E yields lower bounds on interprocessor communication, since only
E(N/P) work can be done without communication by each processor
if the algorithm has N inputs

if algorithm requires total Z operations, communication necessary if
Z/P > E(N/P)
then need to communicate W data such that E(W ) ≥ Z/P − E(N/P)
tighter bounds sometimes attained by considering memory capacity M,
W = Ω(M · Z/P(E(M))− E(N/P))



Fast Fourier Transform Lower Bounds FFT communication lower bound

Radix-2 FFT dependency graph



Fast Fourier Transform Lower Bounds FFT communication lower bound

Paths in Radix-2 FFT dependency graph

Any two edge-disjoint paths in the FFT DAG intersect at no more than
one vertex

in other words, the FFT DAG has no cycles



Fast Fourier Transform Lower Bounds FFT communication lower bound

Work bound for FFT

We prove that the work bound for the radix-2 FFT is EFFT(s) = s log2 s

in particular that with s inputs, at most s log2 s work can be done

we can do this by induction on s

the base case, s = 1 holds trivially

assume we have shown the bound for s − 1 inputs



Fast Fourier Transform Lower Bounds FFT communication lower bound

Work bound for FFT, contd

consider the last level in the FFT graph in which a vertex is computed

if k vertices in the level were computed, we must know k/2 values in
each of the left sub-FFTs

moreover, each sub-FFT must have at least k/2 inputs

conversely, if one of the sub-FFTs had t of the s inputs, we can at
most 2 min(s − t, t) vertices at the last level may be computed

EFFT(s) = maxt(EFFT(s − t) + EFFT(t) + 2 min(s − t, t))



Fast Fourier Transform Lower Bounds FFT communication lower bound

Communication lower bound for the FFT

By induction the expression
EFFT(s) = maxt(EFFT(s − t) + EFFT(t) + 2 min(s − t, t)) implies

EFFT(s) = max
t

((s − t) log2(s − t) + t log(t) + 2 min(s − t, t))

which is maximized by picking t = s/2

EFFT(s) = 2EFFT(s/2) + s = s log2(s)

Given EFFT(s) = s log2(s), the cache complexity is

Qseq-FFT(n,H) ≥ n log2(n)H/EFFT(2H) = n
log(n)

2 log(2H)
= Ω(n logH(n))

We showed that a radix-
√
n FFT algorithm gets this cost.

Your homework includes showing that a careful schedule for the radix-2
FFT algorithm can attain the bound



Fast Fourier Transform Lower Bounds FFT communication lower bound

Communication lower bound for the FFT

Given EFFT(s) = s log2(s), the interprocessor communication cost is

Wpar-FFT(n,P) ≥ E−1
FFT(n log2(n)/P − EFFT(n/P))

Wpar-FFT(n,P) ≥ E−1
FFT(n(log2(n)− log2(n/P))/P)

Wpar-FFT(n,P) ≥ E−1
FFT(n log2(P)/P)

When P = Θ(n/P), Wpar-FFT(n,P) = Ω(n/P)
The tighter lower bound

Wpar-FFT(n,P) = Ω

(
n log2(n)

P log2(n/P)

)
has been shown by other methods [Bilardi, Scquizzato, Silvestri 2012] and
previously for other models (LPRAM) [Aggarwal, Chandra, Snir 1990]



Administrative interlude

Short pause



Sorting General introduction

Sorting and parallel sorting

We first consider variants of sorting for sequential/shared-memory

given n keys or n key-value pairs, order them in memory contiguously
so that the ith smallest key (pair) is in the ith location

if there are equivalent keys, a stable sort is one that preserves their
original ordering

depending on the type of key, we can work with their bit
representation or only perform comparison operations

Sorting in distributed memory entails further problem variants

now need to consider the splitting of keys among processors

generally, we impose an order on the set of processors and distribute
the target buffer in chunks according to this order

exact splitting implies each processor should end up with the same
number of elements

approximate splitting may be sufficient with some imbalance threshold



Sorting General introduction

Sorting algorithms

Most sorting algorithms can be classified as merge-based or
distribution-based

merge-based algorithms sort subsequences then merge them, e.g.
mergesort, bitonic sort

sorting small subsequences is parallel and cache-efficient, but merging
is challenging

distribution-based algorithms partition the keys into buckets, then
sort the buckets, e.g. quicksort, radix sort

sorting buckets is parallel and cache-efficient, but partitioning is
challenging

both merging and partitioning is easy when the keys are
nicely-distributed/random

as a result the dependency-graph and complexity of most sorting
algorithms is input-dependent

bitonic sort is a noteworthy exception, but has cost O(n log2(n))



Sorting Merge-based sorting

Cache-complexity of mergesort

Mergesort sorts two subsequences of size n/2 recursively then merges

Tmergesort(n) = 2Tmergesort(n/2) + Tmerge(n/2)

a standard sequential merge has linear cache complexity
Tmerge(s) = 2s · ν with any cache line size L

since when n ≤ H, no further cache transfers are required,

Qseq-mergesort(n,H) = n log2(n/H) · ν

this cache complexity is not bad and the algorithm is cache-oblivious,
but for optimality we need

Qsort(n,H) = Θ(n logH(n) · ν)

furthermore, its not clear how to parallelize a standard merge

Cole’s mergesort (1988) parallelizes the merge by maintaining and
combing “covering samplers” for each subsequence in mergesort



Sorting Merge-based sorting

Sorting with optimal cache-complexity

Funnelsort: a cache-oblivious merge-based sort

introduced by Frigo, Leiserson, Prokop, and Ramachandran

asymptotically optimal Qfunnelsort(n,H) = Θ(n logH(n) · ν)

partitions n keys into n1/3 subsequences of length n2/3 and sorts them
recursively

merges subsequences via a k1/3 × k2/3-recursively-defined merger

the merger is complicated and not well-parallelizable

some simplifications exist, e.g. “Lazy funnelsort”, but still have
polynomial depth



Sorting Merge-based sorting

Bitonic sort

bitonic sort recurses like mergesort, and uses a “bitonic merge” to
combine subsequences
a bitonic merge is itself recursive and costs O(s log2 s) to merge to
subsequences of size s
the bitonic merge is typically defined with the second subsequence in
reverse order from the first
given a sequence like (x1 ≤ · · · ≤ xi ≥ · · · ≥ x2s) or a shift of such a
sequence, it produces an increasing sequence of size s



Sorting Merge-based sorting

Bitonic merge

the bitonic merge of two reverse order subsequences of size s works as
follows

compare and swap the ith element in the first subsequence with the ith
element in the second
the swaps result in two bitonic sequences, the second has elements
greater than any of those in the other
perform two bitonic merges recursively to merge these subsequences

input may be increasing then decreasing or decreasing then
increasing, and we may want an increasing or decreasing output
‘increasing’ or ‘decreasing’ is a property of the buffer ordering, each
step merges two ‘sorted’ subsequences



Sorting Merge-based sorting

Bitonic sort

The second part of your homework is to analyze bitonic sort



Sorting Distribution-based sorting

Radix sort

Radix sort defines buckets based on bit subsequences of keys

you should be familiar with it from the previous homework

radix sort is typically defined to start with the least significant bits

a key can transition between any pair of buckets for every subset of
bits (in this sense, radix sort is not really a bucket sort)

ordering within buckets must be preserved at the next step (exploits
stability)

Q: what would be different if we started with the most significant
bits?

A: then we would have a bucket sort and would need to sort each
subsequence independently



Sorting Distribution-based sorting

Redistribution in radix sort

Bit operations allow us to determine which key belongs to which bucket

the expensive part is moving the data to the appropriate destination

the arbitrary rerouting is not cache-efficient

in distributed memory, we have multiple ways of picking ‘destinations’

if we want to achieve an exact splitting, we need to assign each
processor a set of destinations that is not aligned with bucket
boundaries
for an approximate splitting it may suffice to assign buckets to
processors, if there are a sufficient number of buckets and they are load
balanced

for an exact splitting we need to do a segmented scan, which bounds
the number of buckets we can efficiently support (no more than n/P,
so log2(n/P) bits at a time)

with an approximate splitting, we could potentially process more bits
at a time, and move data less times



Sorting Distribution-based sorting

Quicksort

Quicksort allows us to partition arbitrary keys by selecting pivots

if we select one pivot at a time, in the average case (or with a good
pivot selection algorithm), we obtain

Tqsort(n) = 2Tqsort(n/2) + O(n)

where the O(n) work at each recursive step is more parallelizable than
merging

we can again use a segmented scan to determine the exact
splitting/destinations

however, we need to move data cross cache boundaries log2(n/H)
times

in the parallel case we redistribute the data log2(P) times

we can increase the base of the logarithm by selecting more pivots
(splitters)



Sorting Distribution-based sorting

Sample sort

The observation that a larger number of pivots reduces the number of
redistributions motivates splitter-based sorting algorithms

if we can find n/H − 1 or P − 1 splitters that partition the data
evenly, it suffices to redistribute the data once and we can proceed
with no communication
sample sort algorithms select such splitters by collecting a sample and
sorting it
random sample sort: we can find r − 1 splitters by collecting a
random sample of size r2 sorting it and selecting every rth element
regular sample sort: we can do better, by first sorting subsequences of
n/r elements, selecting r − 1 splitters from each subsequence, sorting
the r(r − 1) total splitters and selecting a new r − 1 splitters
regular sample sorting guarantees that no splitter interval will contain
more than 2n/r elements
in practice a random sample of size Θ(r log r) might already obtain a
very good splitting



Sorting Distribution-based sorting

Lowering the cost of finding splitters

Sorting a sample of size Θ(P2) sequentially may be expensive on large
distributed systems

Q: how could we sort this sample more efficiently?

A: apply sample sort recursively with all or a subset of processors

an alternative technique to finding splitters is Histogram sort

determines splitters iteratively by probing and computing histograms

if any interval is imbalanced, adjust the splitters



Sorting Distribution-based sorting

Histogram sort

Histogram sort can work well in practice

given a probe (set of splitter-guesses), computing histogram (how
many elements fall between each pair of splitters) can be done by

bucketing unsorted subsequences
sorting subsequences and performing merging with probe
sorting subsequences and performing a binary sort with every element
of the probe

the probe can be initialized by a small random sample

downside is that adjustment may take many iterations if the
distribution is very unbalanced or there are many repeated keys



Sorting Distribution-based sorting

Splitter-based algorithms discussion

There are a plethora of parallel sorting algorithm variants

overall the advantage of splitter-based algorithms in
distributed-memory is that the full set of key-value pairs is
redistributed only once

to design cache-oblivious and/or shared memory algorithms, splitting
may be done recursively and combined with other techniques

it is less clear at this point what the best cache-efficient (parallel)
sorting algorithms are than the best distributed-memory


	Review
	Communication cost model
	Lower bounds

	Fast Fourier Transform Lower Bounds
	FFT communication lower bound

	Administrative interlude
	Sorting
	General introduction
	Merge-based sorting
	Distribution-based sorting


