
CS 598: Communication Cost Analysis of Algorithms
Lecture 13: All-pairs shortest-paths

Edgar Solomonik

University of Illinois at Urbana-Champaign

October 5, 2016

Review Breadth First Search

BFS cost

Last lecture we gave the cost of BFS for a diameter d , n = |V | vertex
graph as (assuming ν ≥ γ)

TBFS = O(d log(P) · α + n/
√
P · β + |E |/P · ν)

based on 2D processor grid, where each processor is assigned all edges
between two subsets of n/

√
P vertices

every BFS step is done by broadcasting the vertices in the frontier
then reducing contributions

each processor receives a total of n/
√
P vertex labels and reduces as

many

cost assumes that the frontiers and edges are load balanced

log(P) factor on latency cost assumes point-to-point α− β model,
absent for BSP

Review Breadth First Search

BFS cost

Which costs will dominate?

TBFS = O(d log(P) · α + n/
√
P · β + |E |/P · ν)

Q: what average vertex degree would yield |E |/P ≥ n/
√
P?

A: |E |/n ≥
√
P would mean the memory-bandwidth cost dominates

the interprocessor communication if ν ≥ β
if cache line size L > 1 and the frontiers are all relatively sparse, BFS
may incur a higher memory bandwidth cost by factor of up to L

Review Weighted Shortest Paths

Bellman Ford

BFS does cannot find weighted shortest paths

Dijkstra is sequential, Bellman Ford provides more parallelism, but
does redundant work

extra work in Bellman Ford depends simultaneously on weights and
graph structure

implies proportionately higher memory bandwidth cost for L = 1
if weights are nearly the same or graph has a sensible (weighted)
spatial embedding, Bellman Ford should not cost as much as BFS
worst case can cause much redundant work, e.g. one very low-weight
length n path in a dense graph

with respect to Dijkstra, Bellman Ford requires factor of O(n/Y)
fewer synchronizations, where Y is the maximum number of edges in
any shortest path

∆-stepping can be more robust, but harder to implement and manage

All pairs shortest paths (APSP) Floyd-Warshall algorithm

All-pairs shortest paths

The output of APSP on a connected graph is a dense matrix of distances

the usual algorithm is Floyd-Warshall

at iteration i , compute all shortest distances with at most i + 1 edges
going through intermediate nodes in the set {1, . . . , i}
let Di be the the shortest distances after iteration i , so D0 = A and
Di = Di ⊕ Di−1(:, i)⊗ Di−1(i , :), that gives

Di (j , k) = min(Di−1(j , k),Di−1(j , i) + Di−1(i , k))

requires O(n3) work (finds correct n2 paths from exponential-sized set)!
each iteration is dependent on the previous

All pairs shortest paths (APSP) Floyd-Warshall algorithm

Parallel Floyd-Warshall

We can parallelize Floyd-Warshall by distributing A and D (each Di) in
blocks on a 2D grid

D = 2D-Floyd-Warshall(A,Π[1 :
√
P, 1 :

√
P], n,P)

D = A
for i = 1 to n

Broadcast D[:, i] along processor rows
Broadcast D[i , :] along processor columns
D := D ⊕ D[:, i]⊗ D[i , :]

This algorithm has a BSP cost TFW = O(n · α + n2/
√
P · β + n3/P · γ).

Q: what memory bandwidth cost does it incur?
A: naively we need to read all of D from memory to cache n times, so
O(n3/P · ν), but like in LU we can try to find a more efficient blocking...

All pairs shortest paths (APSP) Algebraic APSP

APSP interpreted algebraically

Lets examine the relationship between APSP and LU more carefully

denote A2 = A⊗ A and Ak = Ak−1 ⊗ A

Ak contains all shortest distances with paths consisting of exactly k
edges

Ak(i , j) = min
l

(Ak−1(i , l) + A(l , j))

= min
l1,...,lk−1

(
A(i , l1) +

(k−2∑
m=1

A(lm, lm+1)
)

+ A(lk−1, j)

)
so we can write the distance matrix as A∗ = A⊕ A2 ⊕ · · · ⊕ An

in general, A∗ = A⊕ A2 ⊕ A3 ⊕ . . . is called the closure of A over the
given semiring

Q: a closure is defined to sum all powers, why stop at An for APSP?

A: no shortest path can contain more than n edges

All pairs shortest paths (APSP) Algebraic APSP

Computing the closure

For numerical matrices, we can observe

(I + A∗)(I − A) = I + A + A2 + A3 + . . .− (A + A2 + A3 + A4 + . . .) = I

A∗ = (I − A)−1 − I

and try to compute it by inverting I − A. The inverse, like the closure,
may not exist.

All pairs shortest paths (APSP) Recursive APSP

Gauss-Jordan elimination for the matrix inverse

Computing the matrix inverse is commonly referred to as Gauss-Jordan
elimination, which looks very much like Gaussian elimination

A∗ = Gauss-Jordan(A, n)

Partition A =

[
A11 A12

A21 A22

]
, where all Aij are n/2-by-n/2

B11 = Gauss-Jordan(A11, n/2)
B12 = A21 ⊕ B11 ⊗ A12

B21 = A21 ⊕ A21 ⊗ B11

B22 = A22 ⊕ B21 ⊗ B12

A∗22 = Gauss-Jordan(B22, n/2)
A∗21 := B21 ⊕ A∗22 ⊗ B21

A∗12 := B12 ⊕ B12 ⊗ A∗22
A∗11 := B11 ⊕ A∗12 ⊗ A∗21

For APSP it is known as Kleene’s algorithm [Aho, Hopcroft, Ullman 1974]

All pairs shortest paths (APSP) Recursive APSP

Divide-and-conquer all-pairs shortest-paths algorithm

Gauss-Jordan elimination requires two dependent recursive calls on
n/2× n/2 matrices and O(1) matrix multiplications, for a BSP cost of

T (n,P) = 2T (n/2,P) + O(α + n2/
√
cP · β) = O(

√
cP · α + n2/

√
cP · β)

All pairs shortest paths (APSP) Recursive APSP

Short pause

All pairs shortest paths (APSP) APSP via path doubling

Path doubling

We can achieve a logarithmic synchronization cost by a different technique

note that any shortest path with up to 2k edges consists of two
shortest paths of up to k edges

we can write the above algebraically,

I ⊕ A⊕ · · · ⊕ A2k = (I ⊕ A⊕ · · · ⊕ Ak)2

Q: what is the identity matrix I for the tropical semiring?

A: the identity matrix is I =

0 ∞ · · · ∞

∞ . . .
. . .

...
...

. . .
. . . ∞

∞ · · · ∞ 0

i.e. self-loops are distance 0, all other distances are infinite

All pairs shortest paths (APSP) APSP via path doubling

APSP by path doubling

We can compute APSP via the given recurrence

I ⊕ A⊕ · · · ⊕ A2k = (I ⊕ A⊕ · · · ⊕ Ak)2

starting with I ⊕ A, we need to square the matrix log2(n) to get A∗

Q: does this require more or less operations (γ cost) than
Floyd-Warshall?

A: it requires O(n3 log(n)) operations, which is more than O(n3)

the total parallel cost would be

TPD = O(log(n) · α + n2 log(n)/
√
cP · β + n3 log(n)/P · γ)

the memory bandwidth cost with cache size H is O
(
n3 log(n)√

HP
· ν
)

All pairs shortest paths (APSP) APSP via path doubling

Tiskin’s path doubling algorithm
[Tiskin 2001] gives a cheaper way to do path-doubling by realizing that each
shortest path with up to 2k edges is composed of a shortest path with up to k
edges and maybe also a shortest path of exactly k edges

Lets denote A⊗m = I ⊕ A⊕ · · · ⊕ Am, so A⊗n = A∗

and denote A⊗m
s as all shortest paths with up to m edges that consist of exactly

s < m edges, so

A⊗m
s (i , j) =

{
As(i , j) : As(i , j) = A⊗m(i , j)

∞ : otherwise

Tiskin’s observation amounts to the recurrence

A⊗2k = A⊗k ⊕ A⊗k ⊗ A⊗k
k

note that A⊗m
s becomes sparser as we increase m

Furthermore, if A is dense, in expectation A⊗k
k has n2/k edges, and if it does not,

we can definitely find s ∈ [2k/3, k] so that A⊗k
s has at most 3n2/k edges

All pairs shortest paths (APSP) APSP via path doubling

Analysis of Tiskin’s path doubling algorithm

At the kth recursive step a matrix multiplication is performed, with

a dense matrix (in the worst case) of paths with up to k edges

a sparse matrix with O(n2/2k) non-trivial entries (edges) of paths
with exactly s ≈ k edges

the computation cost and bandwidth costs become geometric sums if
the matrix multiplication is decomposed appropriately, leading to costs

TTPD = O(log(n) · α + n2/
√
cP · β + n3/P · (ν/

√
H + γ))

demonstrating that the sparse matrix multiplication cost decreases is
nontrivial, blocking should intuitively be like rectangular matrix
multiplication (instead of matrix size consider number of nonzeros)

All pairs shortest paths (APSP) APSP via path doubling

Analysis of Tiskin’s path doubling algorithm

We can further achieve O(log(P)) synchronizations rather than O(log(n))

Q: given A⊗P and A⊗PP with n2/P edges, how can we compute
efficiently A∗ with O(1) synchronizations if all edge weights are
nonnegative?

A: run Dijkstra’s algorithm for n/P starting vertices with each
processor on A⊗PP to get A⊗PP

∗
, then compute

A∗ = A⊗P ⊕ A⊗PP

∗ ⊗ A⊗P

its more difficult to do this for arbitrary edge weights, see [Tiskin
2001]

	Review
	Breadth First Search
	Weighted Shortest Paths

	All pairs shortest paths (APSP)
	Floyd-Warshall algorithm
	Algebraic APSP
	Recursive APSP
	APSP via path doubling

