CS 598: Communication Cost Analysis of Algorithms

Lecture 14: Betweenness centrality, sample sort, and the mergesort algorithms
of Cole and Goodrich

Edgar Solomonik

University of lllinois at Urbana-Champaign

October 10, 2016

Graph centrality

The problem of betweenness centrality is a close derivative of APSP

o for each vertex, a centrality score gives the number of shortest paths
that go through it

@ if the number of shortest paths between vertices s, t is o(s, t) and the
number of these that go through vertex v is o, (s, t), the betweenness
centrality score is

M) = Y auls.)/o(s. 1
s,teVv
@ note that o,(s,t) = o(s,v) - o(v,t) if d(s,t) = d(s,v) - d(v,t)
@ this problem is important in analysis of biology, transport, and social
network graphs

@ it also has some interesting algorithmic solutions...

Computing betweenness centrality (BC)

There are two major alternatives for computing BC

@ we can modify
BFS/Dijkstra/Bellman-Ford/Floyd-Warshall /path-doubling to keep
track of path multiplicities

@ whenever we take a minimum of weights of different paths, we want
to add multiplicities if their weight is the same

@ algebraically, this can be interpreted as a ‘geodetic’ semiring, where
the set of values is a ‘geodesic’ - a tuple containing the weight and
the multiplicity

@ the simplest algorithm is then to compute APSP along with o(s, t)
and then compute

)‘(V) = Z U(Sa V) 'O-(V) 1.')/0'(5, t)
s,teV,d(s,v)-d(v,t)=d(s,t)

which is no harder than matrix multiplication, for a cost no greater
than APSP

Brandes' algorithm for BC

However, [Brandes 2001] proposed a method that forgoes computing a
dense distance matrix

@ his method was based on SSSP, utilizing BFS or Dijkstra
@ compute d(s,:) and o(s,:) for a given s

@ then consider partial centrality factors (s, v) such that

(s, v) = > a(v,t)/o(s,)
teV,d(s,v)-d(v,t)=d(s,t)
e from ((s, v) we can construct the centrality scores via
Av) = o(s,v)-((s,v)
S

@ however, we need some knowledge of (v, t) and for all v such that
d(s,v)-d(v,t) =d(s,t)

Betweenness centrality Introduction

Shortest path tree

undirected graph shortest path tree

o 15

Betweenness centrality Introduction

Shortest path tree multiplicities

shortest path multiplicites

Betweenness centrality Introduction

Partial centrality factors

So, what does ((s, V) = > e v d(s.v)-d(v.t)=d(s,t) 7 (v, t) /0 (s, t) represent?
@ the shortest path tree from s, is induced by a partial ordering < on
V, where v < t if d(s,v)-d(v,t) =d(s,t)
@ so for any v € V/, the set of vertices t such that one of the shortest
paths from s to t passes through v is

Ne(v)={t:teV,v<sty={t:te V,d(s,v) d(v,t) =d(s,t)}

@ we can now write ((s,v) = > ,cn (y) (v, t)/0(s, 1)
@ the subset of vertices in I(v) connected to v by one edge is

ms(v)={u:ucV,v<st,Pz,v <5z <st}
={ve V,w((s,v)) -d(v,u)=d(s,u)}

e graphically, we can represent the shortest path tree as Ts = (V/, Es)
where (v, u) € E; if u € mg(v)

Betweenness centrality Introduction

Integrating partial centrality factors

So, how can we compute ((s,v) =3 .cn, () o(v,t)/0o(s, t)?
@ Q: for any leaf / € V in the shortest path tree T what is INs(/)?
e A: My(/) =0, and furthermore {(s,v) =0
@ now, for any node x whose children are all leaves (7s(x) = Ms(x)),

(s x)=) 1/o(s, 1)
tems(x)

e more generally, for any node v and t € Ms(v) \ 7s(v) each shortest
paths from v to t must go through some node in 75(v), so

o(v.t)= Y o(p,t)
pETs(v)

furthermore, we have o (v, t)/o(s, t) = 3" cr () o(p, 1) /0 (s, t)
and then it follows

= Y (ot cen)

pem(s,v)

Betweenness centrality Introduction

Centrality factors in shortest path tree

betweenness centrality back-propagation

1/2

Brandes' algorithm for BC

The given relationship allows partial centrality factors to be collected by a
scheme that looks like reverse BFS
@ once all children have their partial centrality factors, the parent can
compute theirs
@ the leaves of the shortest path tree immediately know their centrality
factors ((s,v) =0
@ the parents collect contributions from all of the shortest paths that go
through them to other nodes
@ this can again be written as sparse-matrix sparse-vector multiplication
@ since we know the shortest path tree, we need to ‘relax’ each edge no
more than once
o therefore, for each starting vertex, computing centrality scores from
multiplicities has the same bandwidth and computation cost as BFS
@ however, it can have a somewhat greater latency cost, because the
number of SpMSpVs depends on the depth of the shortest path tree,
which can be greater than the graph diameter

Betweenness centrality Introduction

Communication-efficient BC

We can perform Brandes' algorithm communication-efficiently by doing
many SSSPs at a time
e given M = O(n?/P) memory, we should just do APSP with an
efficient algorithm
@ generally we can expect to have M = O(c|E|/P) memory, so we can
store ¢ > 1 copies of the graph
e assuming that c|E| < n?, we can perform O(c|E|/n) SSSPs at a time
@ each SSSP is an independent BFS or Bellman-Ford execution
@ instead of SpMSpV, we will now have SpMSpM, which is more
communication-efficient
@ for instance, we can make c¢ copies of the graph, and perform an
SSSP (SpMVs) with each set of P/c processors
o for undirected graphs, obtain an interprocessor bandwidth cost of

0 n? L |E|
JoP | P23

Short pause

Parallel sorting revisited Sample sort

Parallel sorting with regular sampling

sorted
..................
IR ER IR RN -] [T .
[T T l
: ' ' sort sample
¥

regular sample

Parallel sorting revisited Sample sort

Parallel sorting with regular sampling

sorted

|
sort sample
¥

L[I ——
L1]
T—select splitters from sample

Parallel sorting revisited = Sample sort

Why is regular sampling guaranteed to work?

Given a sample of size P(P — 1), no part will contain more than 2n/P
elements

@ we select P — 1 splitters from sorted sample of size P(P — 1)

@ n/P? elements are between two subsequent sample elements from any
processor
o if there are k; elements from processor j between splitter / and i + 1,
it has at most (k; + 1)n/P? elements between these splitters
o if distribution on each processor roughly the same k; ~ 1
o if distribution is uneven, we can have k; > 1, but can bound total
f:l ki =P
o therefore, the total number of elements in each interval is bounded by
Jf.’zl(kj +1)n/P? < 2n/P

Parallel sorting revisited = Sample sort

Communication-cost of sample sort

Lets consider the communication cost of sample sort in more detail
@ if the sample is of size less than the size of the partition we need, we
can just sort it sequentially then partition
o for a BSP algorithm we want s = P partitions, for a cache-efficient
sort we want s = n/H
@ s-way partitioning is load balanced given a sample of size s
e so, if s> = O(n/s), i.e. s = O(n'/3), naive sample sort works fine,
because its cheaper to sort the sample than a partition
e if n < s3, sorting the sample sequentially might be too expensive
@ we can sort the sample recursively, unless n < s, when the sample is
larger than the original problem

Parallel sorting revisited = Sample sort

Parallel cache-oblivious sample sort

Sample sort can be adapted to be parallel and cache oblivious [Blelloch,
Gibbons, Simdhavi 2010]

e sort n'/3 subsequences of n?/3

elements recursively in parallel

o collect regular sample of size n'/3 from each subsequence, a total size
of n?/3 and sort it

e select n/3 splitters from the sample

@ merge splitters with subsequences to compute offsets (e.g. by
cache-oblivious bitonic merge)

1/3 o q1/3

@ reorder data by cache-oblivious transpose on n*/° x n*/ matrix of

subsequences (each of length n'/3 on average)

1/3

@ sort n*/° subsequences of O(n2/3) elements recursively in parallel

	Betweenness centrality
	Introduction

	Parallel sorting revisited
	Sample sort

