
CS 598: Communication Cost Analysis of Algorithms
Lecture 14: Betweenness centrality, sample sort, and the mergesort algorithms

of Cole and Goodrich

Edgar Solomonik

University of Illinois at Urbana-Champaign

October 10, 2016

Betweenness centrality Introduction

Graph centrality

The problem of betweenness centrality is a close derivative of APSP

for each vertex, a centrality score gives the number of shortest paths
that go through it

if the number of shortest paths between vertices s, t is σ(s, t) and the
number of these that go through vertex v is σv (s, t), the betweenness
centrality score is

λ(v) =
∑
s,t∈V

σv (s, t)/σ(s, t)

note that σv (s, t) = σ(s, v) · σ(v , t) if d(s, t) = d(s, v) · d(v , t)

this problem is important in analysis of biology, transport, and social
network graphs

it also has some interesting algorithmic solutions...

Betweenness centrality Introduction

Computing betweenness centrality (BC)

There are two major alternatives for computing BC

we can modify
BFS/Dijkstra/Bellman-Ford/Floyd-Warshall/path-doubling to keep
track of path multiplicities

whenever we take a minimum of weights of different paths, we want
to add multiplicities if their weight is the same

algebraically, this can be interpreted as a ‘geodetic’ semiring, where
the set of values is a ‘geodesic’ - a tuple containing the weight and
the multiplicity

the simplest algorithm is then to compute APSP along with σ(s, t)
and then compute

λ(v) =
∑

s,t∈V ,d(s,v)·d(v ,t)=d(s,t)

σ(s, v) · σ(v , t)/σ(s, t)

which is no harder than matrix multiplication, for a cost no greater
than APSP

Betweenness centrality Introduction

Brandes’ algorithm for BC

However, [Brandes 2001] proposed a method that forgoes computing a
dense distance matrix

his method was based on SSSP, utilizing BFS or Dijkstra

compute d(s, :) and σ(s, :) for a given s

then consider partial centrality factors ζ(s, v) such that

ζ(s, v) =
∑

t∈V ,d(s,v)·d(v ,t)=d(s,t)

σ(v , t)/σ(s, t)

from ζ(s, v) we can construct the centrality scores via

λ(v) =
∑
s

σ(s, v) · ζ(s, v)

however, we need some knowledge of σ(v , t) and for all v such that
d(s, v) · d(v , t) = d(s, t)

Betweenness centrality Introduction

Shortest path tree

Betweenness centrality Introduction

Shortest path tree multiplicities

Betweenness centrality Introduction

Partial centrality factors

So, what does ζ(s, v) =
∑

t∈V ,d(s,v)·d(v ,t)=d(s,t) σ(v , t)/σ(s, t) represent?

the shortest path tree from s, is induced by a partial ordering <s on
V , where v <s t if d(s, v) · d(v , t) = d(s, t)

so for any v ∈ V , the set of vertices t such that one of the shortest
paths from s to t passes through v is

Πs(v) = {t : t ∈ V , v <s t} = {t : t ∈ V , d(s, v) · d(v , t) = d(s, t)}

we can now write ζ(s, v) =
∑

t∈Πs(v) σ(v , t)/σ(s, t)

the subset of vertices in Πs(v) connected to v by one edge is

πs(v) = {u : u ∈ V , v <s t, @z , v <s z <s t}
= {u ∈ V ,w((s, v)) · d(v , u) = d(s, u)}

graphically, we can represent the shortest path tree as Ts = (V ,Es)
where (v , u) ∈ Es if u ∈ πs(v)

Betweenness centrality Introduction

Integrating partial centrality factors

So, how can we compute ζ(s, v) =
∑

t∈Πs(v) σ(v , t)/σ(s, t)?

Q: for any leaf l ∈ V in the shortest path tree Ts what is Πs(l)?
A: Πs(l) = ∅, and furthermore ζ(s, v) = 0
now, for any node x whose children are all leaves (πs(x) = Πs(x)),

ζ(s, x) =
∑

t∈πs(x)

1/σ(s, t)

more generally, for any node v and t ∈ Πs(v) \ πs(v) each shortest
paths from v to t must go through some node in πs(v), so

σ(v , t) =
∑

p∈πs(v)

σ(p, t)

furthermore, we have σ(v , t)/σ(s, t) =
∑

p∈πs(v) σ(p, t)/σ(s, t)
and then it follows

ζ(s, v) =
∑

p∈π(s,v)

(
1

σ(s, p)
+ ζ(s, p)

)

Betweenness centrality Introduction

Centrality factors in shortest path tree

Betweenness centrality Introduction

Brandes’ algorithm for BC

The given relationship allows partial centrality factors to be collected by a
scheme that looks like reverse BFS

once all children have their partial centrality factors, the parent can
compute theirs
the leaves of the shortest path tree immediately know their centrality
factors ζ(s, v) = 0
the parents collect contributions from all of the shortest paths that go
through them to other nodes
this can again be written as sparse-matrix sparse-vector multiplication
since we know the shortest path tree, we need to ‘relax’ each edge no
more than once
therefore, for each starting vertex, computing centrality scores from
multiplicities has the same bandwidth and computation cost as BFS
however, it can have a somewhat greater latency cost, because the
number of SpMSpVs depends on the depth of the shortest path tree,
which can be greater than the graph diameter

Betweenness centrality Introduction

Communication-efficient BC

We can perform Brandes’ algorithm communication-efficiently by doing
many SSSPs at a time

given M = O(n2/P) memory, we should just do APSP with an
efficient algorithm
generally we can expect to have M = O(c |E |/P) memory, so we can
store c ≥ 1 copies of the graph
assuming that c |E | ≤ n2, we can perform O(c |E |/n) SSSPs at a time
each SSSP is an independent BFS or Bellman-Ford execution
instead of SpMSpV, we will now have SpMSpM, which is more
communication-efficient
for instance, we can make c copies of the graph, and perform an
SSSP (SpMVs) with each set of P/c processors
for undirected graphs, obtain an interprocessor bandwidth cost of

O

(
n2

√
cP

+
n
√
|E |

P2/3

)

Betweenness centrality Introduction

Short pause

Parallel sorting revisited Sample sort

Parallel sorting with regular sampling

Parallel sorting revisited Sample sort

Parallel sorting with regular sampling

Parallel sorting revisited Sample sort

Why is regular sampling guaranteed to work?

Given a sample of size P(P − 1), no part will contain more than 2n/P
elements

we select P − 1 splitters from sorted sample of size P(P − 1)

n/P2 elements are between two subsequent sample elements from any
processor

if there are kj elements from processor j between splitter i and i + 1,
it has at most (kj + 1)n/P2 elements between these splitters

if distribution on each processor roughly the same kj ≈ 1
if distribution is uneven, we can have kj � 1, but can bound total∑p

j=1 kj = P
therefore, the total number of elements in each interval is bounded by∑p

j=1(kj + 1)n/P2 ≤ 2n/P

Parallel sorting revisited Sample sort

Communication-cost of sample sort

Lets consider the communication cost of sample sort in more detail

if the sample is of size less than the size of the partition we need, we
can just sort it sequentially then partition

for a BSP algorithm we want s = P partitions, for a cache-efficient
sort we want s = n/H

s-way partitioning is load balanced given a sample of size s2

so, if s2 = O(n/s), i.e. s = O(n1/3), naive sample sort works fine,
because its cheaper to sort the sample than a partition

if n < s3, sorting the sample sequentially might be too expensive

we can sort the sample recursively, unless n < s2, when the sample is
larger than the original problem

Parallel sorting revisited Sample sort

Parallel cache-oblivious sample sort

Sample sort can be adapted to be parallel and cache oblivious [Blelloch,
Gibbons, Simdhavi 2010]

sort n1/3 subsequences of n2/3 elements recursively in parallel

collect regular sample of size n1/3 from each subsequence, a total size
of n2/3 and sort it

select n1/3 splitters from the sample

merge splitters with subsequences to compute offsets (e.g. by
cache-oblivious bitonic merge)

reorder data by cache-oblivious transpose on n1/3 × n1/3 matrix of
subsequences (each of length n1/3 on average)

sort n1/3 subsequences of O(n2/3) elements recursively in parallel

	Betweenness centrality
	Introduction

	Parallel sorting revisited
	Sample sort

