
CS 598: Communication Cost Analysis of Algorithms
Lecture 16: Tree contraction, Euler tour, list ranking, connectivity, and MST

Edgar Solomonik

University of Illinois at Urbana-Champaign

October 17, 2016

Tree contraction PRAM warm-up

Parallel prefix (scan)

Before continuing with tree contraction, lets consider a simpler problem

parallel prefix: given array v ∈ Rn, compute P(v) = w ∈ Rn, so
w(i) =

∑i−1
j=1 v(j)

compute z = P(y) recursively where y ∈ Rn/2 and
y(i) = v(2i) + v(2i + 1)

then obtain w(2i) = z(i − 1), w(2i + 1) = z(i − 1) + v(2i) where
z(0) = 0

can compute with O(log(n)) steps and n processors in PRAM

Q: how many steps if we use n/ log2(n) processors?

A: O(log(n)), for recursive step i need max(1, log2(n)/2i) steps, total
less than 3 log2(n)

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Rake-compress

Deterministic rake-compress

For a binary tree, raking leaves can be done in O(1) steps

consider larger branch factors for a boolean expression tree
Q: if each node computes ∨ or ∧, how can we rake in 1 CRCW
PRAM step?
A: if ∨, write 1 for all children marked 1, if ∧, write 0 for all children
marked 0 (any conflict resolution is correct)
rake can be done deterministically, by splitting each chain

worst case: chain of length n, completes in O(log(n)) steps but Θ(n)
nodes require work at each step

Tree contraction Rake-compress

Randomized parallel compress

Randomization enables a compress step that actually removes nodes

randomly assign 1 or 0 to each node in the chain
pointer chase from every node marked 0 whose parent is marked 1

each rake-compress step decreases the number of nodes by 7/8 w.h.p.
Q: why does this give us an algorithm that requires O(log(n)) steps
and only O(n/ log(n)) processors?
A: first rake-compress with O(n/ log(n)) processors takes O(log(n))
steps, each subsequent rake-compress requires a factor of 7/8 fewer
steps, so total O(log(n))

Tree contraction Rake-compress

Randomized Miller and Reif algorithm in BSP

So, how do we do tree contraction in the BSP model?

perform O(n) accesses and pointer chases needed in a PRAM step
using O(1) BSP supersteps and O(n/P) communication

with each step of rake-compress we decrease the number of nodes
and accesses geometrically

need to assume the nodes/accesses are load balanced (can randomly
permute initially)

the communication cost then goes down geometrically

after O(log(P)) steps, the size of the tree is O(n/P), so we can
collect all nodes on one processor and contract the tree locally

the total cost is then

O(n/P · β + log(P) · α)

Tree contraction List ranking and Euler tour

Indexing elements of a linked list

List ranking is closely related to tree contraction

given a linked list p of size n, compute the distance dp(i) from the
end of the list for each element

more generally, scan on a linked list

trivial linear time algorithm sequentially
can convert to array via first definition, do scan on array, convert back
can also perform scan by contracting list and expanding back

compress by pointer jumping: e.g. compute q(i) = p(p(i)), compute
dq(i) then dp(i) = 1 + 2dq(i), dp(p(i)) = 2dq(i)

same problem as in compress for tree contraction: how to resolve
conflicts?

again randomized solution is good, assign 0 or 1 to each i , pointer
chase if 0 and p(i) is 1

to get dp(i) keep track of non-unit neighbor distances while recursing

same asymptotic cost as rake-compress, easy in EREW

Tree contraction List ranking and Euler tour

m-bridges

Efficient computation of tree contraction in EREW can be done by
decomposing into n/P-bridges1

and contracting each bridge to a vertex

1diagram source and further information: Gazit, Miller, Teng 1988

Tree contraction List ranking and Euler tour

Euler tour

We can find the bridges via an Euler tour2

followed by a list ranking (prefix sum) on the Euler tour tree

2diagram source: Wikipedia (David Eppstein)

Tree contraction Practical considerations

Cost of tree contraction in other models

Both list ranking and rake-compress are based on pointer-chasing

how expensive is it to perform n chases with P processors?

in PRAM, n/P steps
in BSP, 1 superstep, O(n/P) communication
in the ideal cache model, with cache line of size L, O(Ln/P) memory
bandwidth cost (each chase is likely a cache miss)
in the α− β model, we have all-to-all-v

by direct send: n/P communication with min(n/P,P − 1) messages
by butterfly all-to-all (if load-balanced) O(n

P
log(P) · β + log(P) · α)

so list ranking and tree contraction cost a factor of O(log(P)) more
than in BSP
the amount of work is O(n/P · γ), flop-to-byte ratio O(1/ log(P))

conclusion: pointer chases require lots of messages and random
(unstructured) memory accesses

we can do tree contraction faster, if each processor starts with a
subtree (even better, n/P-bridge)

Tree contraction Practical considerations

Short pause

Connectivity Introduction

Finding connected components

Consider finding the connected sets of vertices in a (disconnected) graph

sequentially, there are many linear-time solutions, including BFS

in parallel things are much more interesting

Shiloach and Vishkin (1980) provide an efficient CRCW PRAM
algorithm

given a graph with n vertices and m edges, it uses n + m processors
to complete in O(log(n)) steps

Connectivity Shiloach-Vishkin algorithm

Parallel algorithm for connectivity

Start with a tree for each node and compute a tree for each connected
component

let each node i store ‘parent’ F (i)

let a star be any tree of height ≤ 2

The algorithm iterates the following steps

1 conditional star hooking: if (i , j) ∈ E , i in star, and F (i) > F (j),
perform F (F (i))← F (j) (for every star, some hook may succeed)

2 unconditional star hooking: if (i , j) ∈ E , i in star, and F (i) 6= F (j),
perform F (F (i))← F (j) (for every star, some hook succeeds)

3 shortcutting: (pointer chasing) if i not in star, F (i)← F (F (i))

and terminates when all nodes are in a star (no hook occurs)

Connectivity Shiloach-Vishkin algorithm

A graph with two connected components

Connectivity Shiloach-Vishkin algorithm

First iteration

Connectivity Shiloach-Vishkin algorithm

First iteration

Connectivity Shiloach-Vishkin algorithm

First iteration

Connectivity Shiloach-Vishkin algorithm

Second iteration

Connectivity Shiloach-Vishkin algorithm

Second iteration

Connectivity Shiloach-Vishkin algorithm

Analysis of parallel tree connectivity

Algorithm converges after O(log(n)) iterations

sum of tree heights (starts at n) decreases by a factor of at least 3/2
every iteration

steps 1 and 2 will hook every star to a tree
step 3 will decrease the height of every tree by 3/2

requires O(n + m) work per step

O(log(n)) steps with O(n + m) processors in PRAM

Q: in BSP, can we do O(log(P)) rather than O(log(n)) steps

A: not easily, cost proportional to O(log(n)) SpMVs with adjacency
matrix, plus pointer chasing

Minimal spanning tree Introduction

Minimal spanning tree (MST)

Given graph G construct spanning tree with minimal sum of edge weights

if G not connect, spanning tree forest is desired

Prim’s algorithm: start a tree from random vertex, connect minimal
edge to tree

Kruskal’s algorithm: start a tree at every vertex, add minimal edge
that connects two trees

works for finding forests
given two connected parts of the spanning tree (incl. single vertex),
minimal edge connecting these must be in the spanning tree
this condition suggests a parallel algorithm

Minimal spanning tree Parallel algorithm

Parallel MST algorithm

We follow the approach Shiloach and Vishkin, which is similar to
connectivity

algorithm works for CRCW PRAM with priorities (processor with
smallest index wins write conflict)

start by sorting edges by weight across processors

perturb each edge weight to make all different or break ties
dynamically

algorithm consists of similar steps
1 unconditional star hooking: if (i , j) ∈ E , i in star, and F (i) 6= F (j),

perform F (F (i))← F (j) (for every star, minimal-weight hook succeeds)
2 shortcutting: (pointer chasing) if i not in star, F (i)← F (F (i))

if we don’t have priorities, need O(log(n)) steps to calculate the
minimal-weight hook at every iteration

	Tree contraction
	PRAM warm-up
	Expression evaluation
	Rake-compress
	List ranking and Euler tour
	Practical considerations

	Connectivity
	Introduction
	Shiloach-Vishkin algorithm

	Minimal spanning tree
	Introduction
	Parallel algorithm

