CS 598: Communication Cost Analysis of Algorithms Lecture 16: Tree contraction, Euler tour, list ranking, connectivity, and MST

Edgar Solomonik

University of Illinois at Urbana-Champaign

October 17, 2016

Parallel prefix (scan)

Before continuing with tree contraction, lets consider a simpler problem

- parallel prefix: given array $v \in \mathbb{R}^n$, compute $P(v) = w \in \mathbb{R}^n$, so $w(i) = \sum_{j=1}^{i-1} v(j)$
- compute z = P(y) recursively where $y \in \mathbb{R}^{n/2}$ and y(i) = v(2i) + v(2i+1)
- then obtain w(2i) = z(i-1), w(2i+1) = z(i-1) + v(2i) where z(0) = 0
- can compute with $O(\log(n))$ steps and *n* processors in PRAM
- Q: how many steps if we use $n/\log_2(n)$ processors?
- A: O(log(n)), for recursive step i need max(1, log₂(n)/2ⁱ) steps, total less than 3 log₂(n)

Deterministic rake-compress

For a binary tree, raking leaves can be done in O(1) steps

- consider larger branch factors for a boolean expression tree
- Q: if each node computes \lor or \land , how can we rake in 1 CRCW PRAM step?
- A: if ∨, write 1 for all children marked 1, if ∧, write 0 for all children marked 0 (any conflict resolution is correct)
- rake can be done deterministically, by splitting each chain

 worst case: chain of length n, completes in O(log(n)) steps but Θ(n) nodes require work at each step

Randomized parallel compress

Randomization enables a compress step that actually removes nodes

- randomly assign 1 or 0 to each node in the chain
- pointer chase from every node marked 0 whose parent is marked 1

- each rake-compress step decreases the number of nodes by 7/8 w.h.p.
- Q: why does this give us an algorithm that requires O(log(n)) steps and only O(n/log(n)) processors?
- A: first rake-compress with O(n/log(n)) processors takes O(log(n)) steps, each subsequent rake-compress requires a factor of 7/8 fewer steps, so total O(log(n))

Randomized Miller and Reif algorithm in BSP

So, how do we do tree contraction in the BSP model?

- perform O(n) accesses and pointer chases needed in a PRAM step using O(1) BSP supersteps and O(n/P) communication
- with each step of rake-compress we decrease the number of nodes and accesses geometrically
- need to assume the nodes/accesses are load balanced (can randomly permute initially)
- the communication cost then goes down geometrically
- after $O(\log(P))$ steps, the size of the tree is O(n/P), so we can collect all nodes on one processor and contract the tree locally
- the total cost is then

$$O(n/P \cdot \beta + \log(P) \cdot \alpha)$$

Indexing elements of a linked list

List ranking is closely related to tree contraction

- given a linked list p of size n, compute the distance d_p(i) from the end of the list for each element
- more generally, scan on a linked list
 - trivial linear time algorithm sequentially
 - can convert to array via first definition, do scan on array, convert back
 - can also perform scan by contracting list and expanding back
- compress by pointer jumping: e.g. compute q(i) = p(p(i)), compute $d_q(i)$ then $d_p(i) = 1 + 2d_q(i)$, $d_p(p(i)) = 2d_q(i)$
- same problem as in compress for tree contraction: how to resolve conflicts?
- again randomized solution is good, assign 0 or 1 to each *i*, pointer chase if 0 and *p*(*i*) is 1
 - to get $d_p(i)$ keep track of non-unit neighbor distances while recursing
- same asymptotic cost as rake-compress, easy in EREW

m-bridges

Efficient computation of tree contraction in EREW can be done by decomposing into $n/P\mbox{-}bridges^1$

Figure 9.1: The Decomposition of a Tree into its 5-Bridges.

and contracting each bridge to a vertex

¹diagram source and further information: Gazit, Miller, Teng 1988

Euler tour

We can find the bridges via an **Euler tour**²

followed by a list ranking (prefix sum) on the Euler tour tree

²diagram source: Wikipedia (David Eppstein)

Cost of tree contraction in other models

Both list ranking and rake-compress are based on pointer-chasing

- how expensive is it to perform *n* chases with *P* processors?
 - in PRAM, n/P steps
 - in BSP, 1 superstep, O(n/P) communication
 - in the ideal cache model, with cache line of size L, O(Ln/P) memory bandwidth cost (each chase is likely a cache miss)
 - $\bullet\,$ in the $\alpha-\beta\,$ model, we have all-to-all-v
 - by direct send: n/P communication with min(n/P, P-1) messages
 - by butterfly all-to-all (if load-balanced) $O(\frac{n}{P}\log(P) \cdot \beta + \log(P) \cdot \alpha)$
 - so list ranking and tree contraction cost a factor of O(log(P)) more than in BSP
 - the amount of work is $O(n/P \cdot \gamma)$, flop-to-byte ratio $O(1/\log(P))$
- conclusion: pointer chases require lots of messages and random (unstructured) memory accesses
- we can do tree contraction faster, if each processor starts with a subtree (even better, n/P-bridge)

Short pause

Finding connected components

Consider finding the connected sets of vertices in a (disconnected) graph

- sequentially, there are many linear-time solutions, including BFS
- in parallel things are much more interesting
- Shiloach and Vishkin (1980) provide an efficient CRCW PRAM algorithm
- given a graph with n vertices and m edges, it uses n + m processors to complete in O(log(n)) steps

Parallel algorithm for connectivity

Start with a tree for each node and compute a tree for each connected component

- let each node i store 'parent' F(i)
- let a star be any tree of height ≤ 2

The algorithm iterates the following steps

- conditional star hooking: if $(i, j) \in E$, *i* in star, and F(i) > F(j), perform $F(F(i)) \leftarrow F(j)$ (for every star, some hook may succeed)
- ② unconditional star hooking: if $(i, j) \in E$, *i* in star, and $F(i) \neq F(j)$, perform $F(F(i)) \leftarrow F(j)$ (for every star, some hook succeeds)

Solution shortcutting: (pointer chasing) if *i* not in star, $F(i) \leftarrow F(F(i))$ and terminates when all nodes are in a star (no hook occurs)

A graph with two connected components

First iteration

1. conditional star hooking

First iteration

2. unconditional star hooking

First iteration

Second iteration

1. conditional star hooking

Second iteration

2. unconditional star hooking

Analysis of parallel tree connectivity

Algorithm converges after $O(\log(n))$ iterations

- sum of tree heights (starts at *n*) decreases by a factor of at least 3/2 every iteration
 - steps 1 and 2 will hook every star to a tree
 - $\bullet\,$ step 3 will decrease the height of every tree by 3/2
- requires O(n+m) work per step
- $O(\log(n))$ steps with O(n+m) processors in PRAM
- Q: in BSP, can we do $O(\log(P))$ rather than $O(\log(n))$ steps
- A: not easily, cost proportional to $O(\log(n))$ SpMVs with adjacency matrix, plus pointer chasing

Minimal spanning tree (MST)

Given graph G construct spanning tree with minimal sum of edge weights

- if G not connect, spanning tree forest is desired
- Prim's algorithm: start a tree from random vertex, connect minimal edge to tree
- Kruskal's algorithm: start a tree at every vertex, add minimal edge that connects two trees
 - works for finding forests
 - given two connected parts of the spanning tree (incl. single vertex), minimal edge connecting these must be in the spanning tree
 - this condition suggests a parallel algorithm

Parallel MST algorithm

We follow the approach Shiloach and Vishkin, which is similar to connectivity

- algorithm works for CRCW PRAM with priorities (processor with smallest index wins write conflict)
- start by sorting edges by weight across processors
- perturb each edge weight to make all different or break ties dynamically
- algorithm consists of similar steps
 - unconditional star hooking: if $(i, j) \in E$, *i* in star, and $F(i) \neq F(j)$, perform $F(F(i)) \leftarrow F(j)$ (for every star, minimal-weight hook succeeds)
 - Shortcutting: (pointer chasing) if i not in star, $F(i) \leftarrow F(F(i))$
- if we don't have priorities, need $O(\log(n))$ steps to calculate the minimal-weight hook at every iteration