
CS 598: Communication Cost Analysis of Algorithms
Lecture 17: Sparse linear systems: communication-avoiding algorithms

Edgar Solomonik

University of Illinois at Urbana-Champaign

October 19, 2016

Introduction to sparse linear systems Discretization

PDE discretization

The primary source of sparse matrix problems in computational science are
partial differential equations

we restrict ourself only to considerations necessary for communication
complexity analysis of iterative schemes

in particular, we care about the structure of the sparse matrices
associated with different discretizations

numerical methods for PDEs seek a mesh-based representation
solution to the PDE over a given domain

structured grids define a mesh with a regular (uniform) connectivity
pattern, which be inferred implicitly
unstructured grids define a mesh with an irregular connectivity
pattern that needs to be stored explicitly

Introduction to sparse linear systems Discretization

Basic approximation (finite differences)

Lets consider approximation of the second derivative of a function u(x)

we can derive an approximation from a truncated Taylor expansion
with step size h

d2u

dx2
(x) ≈ u(x − h)− 2u(x) + u(x + h)

h2

such approximations of derivatives can be represented by a stencil

which is applied for every node in the mesh
the application of this 1D 3-point stencil to n grid-nodes, can be done
via SpMV with a tridiagonal matrix, like

d2u
dx2

(h)
...

d2u
dx2

(nh)

 =
1

h2


−2 1

1
. . .

. . .
. . .


 u(h)

...
u(nh)


the Toeplitz matrix structure can enable solution via FFT

Introduction to sparse linear systems Discretization

Sparsity of multidimensional discretization

Recall the sparse matrix given by 1D centered differences

D =


−2 1

1
. . .

. . .

. . .


Q: what sparse matrix would a centered difference approximation
yield for a n × n uniform grid?
A: assuming a natural ordering of elements

A =


F In

In
. . .

. . .

. . .


where In is the identity matrix with dimension n and F = D − 2In

Q: what does the first subdiagonal of A look like?
A: written in row-vector form: [1n−1 0 1n−1 0 · · · 1n−1] where
1n−1 = [1 · · · 1] is a row vector of dimension n − 1

Introduction to sparse linear systems Discretization

PDE discretization methods

Lets consider characteristics of the two most basic types of discretizations

finite difference methods

for derivative approximations on uniform grids, yield structured (nearly
Toeplitz) matrices
simple and attractive for regular grids due to potential for fast methods
when applied on irregular grids or for generalized differential operators,
may need to work with sparse matrix representation

finite element methods (FEM)

define n localized basis functions over n mesh-points
entries of matrix given by pairwise integrals of basis functions over the
whole space
matrix is sparse because most pairs of functions have disjoint support
(one or the other is zero at every point)
can yield structured or unstructured matrices
the matrix assembly can happen statically or dynamically (on the fly)
well-understood and general, extensible to high-order methods

Introduction to sparse linear systems Solvers

Sparse linear systems of equations

After a PDE discretization and also in other types of applications, we are
left with the ubiquitous matrix equation

Ax = b

where A is square and sparse

A may be structured and/or may have an implicit representation

solutions can be found by direct or iterative methods
direct methods compute x = A−1b by an approximation to A−1

A−1 may be dense or may not exist
can try to preserve sparsity in factorization of A (e.g. by LU)
can also obtain an approximate solution by an inexact factorization,
e.g. incomplete LU: A ≈ LU where L,U have the same sparsity as A
an inexact factorization may be useful as a preconditioner
Ax = b → U−1L−1Ax = U−1L−1b

iterative methods solve Ax = b by improving an approximation for x
by evolving a guess for x rather than trying to determine A−1, we can
use less memory and possibly do less computation

Direct solvers for sparse linear systems Sparse Cholesky factorization

Sparse Cholesky

Lets consider Cholesky A = LLT on a sparse symmetric matrix A

as an illustrative example, lets consider the following graph

with adjacency matrix A

we would like to perform sparse Cholesky of I + A

Q: if v is the first row/column in A, how many nonzeros will there be
after we do the first Cholesky update?

A: we will get a dense matrix, since I + A =

x1 x2 · · ·
x2 1 0
... 0

. . .

 so, the

first row/column of L will be dense, and the update will be a dense
vector outer product L(:, 1) · L(1, :)

Direct solvers for sparse linear systems Sparse Cholesky factorization

Sparse Cholesky

Lets consider Cholesky A = LLT on a sparse symmetric matrix A

Q: now, how many nonzeros will the update introduce if v is the last

row/column of A? That means we have I + A =


1 0 y1

0
. . . y2

y1 y2
. . .


A: none, in fact the final L will have the same sparsity as the
lower-triangular part of A, the update is an inner product

the whole algorithm will require O(n) computation rather than O(n3)

takeaway idea: the ordering of the rows and columns in the sparse
matrix is quintessential for minimizing fill-in during sparse matrix
factorization

Direct solvers for sparse linear systems Sparse Cholesky factorization

Nested dissection intuition

In the toy example, we note that v was a vertex separator

the general idea of nested dissection is to find vertex separators
recursively and put them at the end of the elimination ordering

a step of Cholesky/LU, graphically corresponds to eliminating a
vertex and connecting all of its neighbors together

if we first eliminate vertices local to different graph partitions, we can
perform them independently

on the other hand, if we eliminate the separator between the graph
partitions, we will potentially create many new edges (fill-in) between
the two partitions

Direct solvers for sparse linear systems Sparse Cholesky factorization

Nested dissection

The nested dissection algorithm works on a sparse matrix A as follows

let G be the graph with adjacency matrix A
find a small balanced vertex separator S in G

reorder the rows/columns of A as [V1,V2,S], obtaining

A =

 A1 0 A1S

0 A2 A2S

AS1 AS2 AS


factorize A1 = L1L

T
1 and A2 = L2L

T
2 recursively (in parallel)

compute LS1 = LT1S = AS1L
−T
1 , LS2 = LT2S = AS2L

−T
2

factorize AS − LS1 · LT1S = LSL
T
S by dense Cholesky

Direct solvers for sparse linear systems Sparse Cholesky factorization

Nested dissection analysis

Lets now consider the cost of nested dissection

finding a good balanced vertex separator for a general graph is hard
and may not even be possible

if the sparse matrix comes from a PDE discretization, we can subdivide
the physical domain
for a uniform (regular) grid, we should slice the longest dimension
Q: what is the size of a minimal balanced separator for a 2D grid? 3D?
A: 2D |S | = O(

√
n), 3D |S | = O(n2/3), dD |S | = O(n(d−1)/d)

with additional assumptions on the partitioning, it can be shown that
the triangular solves like AS1L

−T
1 and the update AS − LS1 · LT1S have

costs that do not asymptotically exceed the final Cholesky on an
|S | × |S | matrix

given this, we have the recurrence

Tsp-Chol(n, d ,P) = Tsp-Chol(n/2, d ,P/2) + O(TChol(n
(d−1)/d ,P))

Direct solvers for sparse linear systems Sparse Cholesky factorization

Nested dissection cost analysis

Lets expand the cost recurrence of Cholesky with nested dissection

Tsp-Chol(n, d ,P) = Tsp-Chol(n/2, d ,P/2) + O(TChol(n
(d−1)/d ,P))

TChol ≤ TLU, so we can recall the cost for dense Cholesky

TChol(n
(d−1)/d ,P) = O

(
n3(d−1)/d

P
· γ +

n2(d−1)/d√
cP

· β +
√
cP · α

)
Q: does the flop cost decrease geometrically in nested dissection?
A: need 23(d−1)/d > 2, so 3(d − 1)/d > 1 and (d − 1)/d > 1/3,
which is always true
Q: does the communication cost also always decrease geometrically?
A: yes, 22(d−1)/d >

√
2, as 2(d − 1)/d > 1/2 since (d − 1)/d > 1/4

Q: lastly, how about the synchronization cost (α term)?
A: also decreases geometrically, since P does, so we obtain

Tsp-Chol(n, d ,P) = O(TChol(n
(d−1)/d ,P))

Direct solvers for sparse linear systems Sparse Cholesky factorization

Short pause

Iterative solvers for sparse linear systems Introduction

Jacobi iteration

Jacobi iteration is a basic sparse iterative method for solving Ax = b

start with an initial guess x0

compute xi+1 = D−1(b− (A−D)xi) where D is the diagonal of A, so

xi+1(j) =
1

A(j , j)

(
b(j)−

∑
k 6=j

A(j , k)xi (k)

)

the expensive part is the SpMV (A− D)xi

slight variations can improve convergence by rescaling some terms

if A is a stencil, Jacobi iteration is just a simultaneous stencil
application to all nodes in the mesh

Iterative solvers for sparse linear systems Introduction

Gauss-Seidel iteration

Gauss-Seidel tries to improve convergence of Jacobi iteration by using
applications of the stencil in one part of the mesh as inputs to the next

this is the same as computing a sparse subset of xi+1 at every
iteration, and taking the rest to be elements of xi

naive Gauss-Seidel computes one element at a time and has almost
no parallelism

Gauss-Seidel can be seen as Bellman-Ford where edge relaxations are
done in some order and use the latest values

in the worst case it has as little parallelism as Dijkstra’s algorithm

Gauss-Seidel with red-black ordering tries to find an ‘ordering’ that
has parallelism, in particular a 2-coloring of the graph (partition
vertices in two sets such that each set has no internal edges), and
updates 1 color at a time

Iterative solvers for sparse linear systems Introduction

Krylov subspace methods

An m-dimensional Krylov subspace for matrix A with starting vector v is

Km(A, v) = span{v ,Av ,A2v . . .Am−1v}
from Km(A, b − Ax0) where x0 is an initial guess, we can extract a
better approximation for Ax − b
Krylov methods for linear systems include Arnoldi, CG, GMRES,
Lanczos and many variants of these
other choices of v allow computation of eigenvectors of A (Akx
converges to the eigenvector of A with the largest eigenvalue)
from a bird’s eye view, these methods are dominated in cost by SpMV
except block Krylov methods, which compute AV for tall-skinny V

the main motivation for these is increasing (communication) efficiency
we can also distinguish between orthogonalized and
non-orthogonalized methods

orhtogonalizing each iterate with the previous can improve convergence
orthogonalization can be done by tall-skinny QR, but implies a strict
dependence between SpMV iterations

Iterative solvers for sparse linear systems Communication cost

Cost analysis of iterative methods

We already studied the cost of SpMV earlier in the course

given a matrix with m nonzeros, randomization and 2D blocking gives

TSpMV(n,m,P) = O

(
m

P
· ν +

n√
P
· β + log(P) · α

)
where we assume ν > γ and point-to-point messages for latency cost

if we have a low-order stencil (m = O(n)) on a uniform d-dimensional
grid, it makes sense to partition vertices (matrix rows)

we can pick out subvolumes of n/P vertices, which are connected to
O((n/P)(d−1)/d) external vertices

this partitioning can lower interprocessor communication cost

TSpMV-d(n, d ,P) = O

(
n

P
· ν +

(n
P

)(d−1)/d
· β + α

)
Q: how much lower is the interprocessor bandwidth cost for d = 2? 3?

A: a factor of Θ(
√
n) in 2D and Θ(n1/3P1/6) in 3D

Iterative solvers for sparse linear systems Communication cost

Cost comparison of sparse linear solvers

Lets compare the cost of iterative methods with that of sparse Cholesky

Tsp-Chol(n, d ,P) = O

(
n3(d−1)/d

P
· γ +

n2(d−1)/d√
cP

· β +
√
cP · α

)
the memory-bandwidth cost would be O

(
n3(d−1)/d

P
√
H
· ν
)

let s be the number of iterations our method takes to converge

the total cost of a sparse iterative method with s iterations is

s · TSpMV-d(n, d ,P) = O

(
sn

P
· ν + s

(n
P

)(d−1)/d
· β + s · α

)
one can argue for the expectation, s = Θ(n1/d)

TKr(n, d ,P) = O

(
n(d+1)/d

P
· ν +

n

P(d−1)/d · β + n1/d · α
)

direct methods better for d = 2 and worse for d = 3? (apples and
oranges are both spherical)

Iterative solvers for sparse linear systems Communication-avoiding algorithms for iterative methods

Improving the cost of sparse iterative solvers

We have observed that sparse iterative methods entail a few
communication bottlenecks

the flop-to-byte ratio is O(1) (excepting block Krylov methods and
the case of each processor fitting the whole sub-problem in cache)

the synchronization (latency) cost scales with the number of iterations

the interprocessor communication cost is non-trivial, but smaller than
the memory-bandwidth cost by a factor of Θ((n/P)1/d)

to do better, we need to find ways to execute many SpMVs faster
than performing each one at a time

	Introduction to sparse linear systems
	Discretization
	Solvers

	Direct solvers for sparse linear systems
	Sparse Cholesky factorization

	Iterative solvers for sparse linear systems
	Introduction
	Communication cost
	Communication-avoiding algorithms for iterative methods

