CS 598: Communication Cost Analysis of Algorithms
Lecture 17: Sparse linear systems: communication-avoiding algorithms

Edgar Solomonik

University of lllinois at Urbana-Champaign

October 19, 2016

PDE discretization

The primary source of sparse matrix problems in computational science are
partial differential equations

@ we restrict ourself only to considerations necessary for communication
complexity analysis of iterative schemes

@ in particular, we care about the structure of the sparse matrices
associated with different discretizations

@ numerical methods for PDEs seek a mesh-based representation
solution to the PDE over a given domain

o structured grids define a mesh with a regular (uniform) connectivity
pattern, which be inferred implicitly

o unstructured grids define a mesh with an irregular connectivity
pattern that needs to be stored explicitly

Introduction to sparse linear systems Discretization

Basic approximation (finite differences)

Lets consider approximation of the second derivative of a function u(x)
@ we can derive an approximation from a truncated Taylor expansion
with step size h
d?u . u(x—h) —2u(x)+ u(x + h)
il P2

@ such approximations of derivatives can be represented by a stencil

which is applied for every node in the mesh
o the application of this 1D 3-point stencil to n grid-nodes, can be done
via SpMV with a tridiagonal matrix, like

2, _
el RN u(h)
d? - h? :

24 (nh) u(nh)

Sparsity of multidimensional discretization

Recall the sparse matrix given by 1D centered differences
-2 1

D={|1

@ Q: what sparse matrix would a centered difference approximation

yield for a n x n uniform grid?
@ A: assuming a natural ordering of elements

F I
A= 11,

where /I, is the identity matrix with dimension nand F = D — 2/,
@ Q: what does the first subdiagonal of A look like?
@ A: written in row-vector form: [1,_1 01,7 0 --- 1,_1] where
1,1 =[1 --- 1] is a row vector of dimension n — 1

PDE discretization methods

Lets consider characteristics of the two most basic types of discretizations
o finite difference methods
o for derivative approximations on uniform grids, yield structured (nearly
Toeplitz) matrices
e simple and attractive for regular grids due to potential for fast methods
e when applied on irregular grids or for generalized differential operators,
may need to work with sparse matrix representation

e finite element methods (FEM)

o define n localized basis functions over n mesh-points

e entries of matrix given by pairwise integrals of basis functions over the
whole space

e matrix is sparse because most pairs of functions have disjoint support
(one or the other is zero at every point)

e can yield structured or unstructured matrices

e the matrix assembly can happen statically or dynamically (on the fly)

o well-understood and general, extensible to high-order methods

Introduction to sparse linear systems Solvers

Sparse linear systems of equations

After a PDE discretization and also in other types of applications, we are
left with the ubiquitous matrix equation

Ax=0>b

where A is square and sparse
@ A may be structured and/or may have an implicit representation
@ solutions can be found by direct or iterative methods
o direct methods compute x = A~1b by an approximation to A~!
e A~! may be dense or may not exist
e can try to preserve sparsity in factorization of A (e.g. by LU)
e can also obtain an approximate solution by an inexact factorization,
e.g. incomplete LU: A~ LU where L, U have the same sparsity as A
@ an inexact factorization may be useful as a preconditioner
Ax=b — UM 1Ax=U"1L"1p
@ iterative methods solve Ax = b by improving an approximation for x
o by evolving a guess for x rather than trying to determine A~1, we can
use less memory and possibly do less computation

Sparse Cholesky

Lets consider Cholesky A = LLT on a sparse symmetric matrix A
@ as an illustrative example, lets consider the following graph
O
O\ O
OV
athe,
OO0
with adjacency matrix A
@ we would like to perform sparse Cholesky of | + A

e Q: if v is the first row/column in A, how many nonzeros will there be
after we do the first Cholesky update?

X1 X2
o A: we will get a dense matrix, since |+ A= | X2 1 0 | so the
0

first row/column of L will be dense, and the update will be a dense
vector outer product L(:,1) - L(1,:)

Sparse Cholesky

Lets consider Cholesky A= LLT on a sparse symmetric matrix A

@ Q: now, how many nonzeros will the update introduce if v is the last

1 0 »n
row/column of A? That means we have |+ A= |0 .
yi o y2

@ A: none, in fact the final L will have the same sparsity as the
lower-triangular part of A, the update is an inner product

e the whole algorithm will require O(n) computation rather than O(n?)

o takeaway idea: the ordering of the rows and columns in the sparse
matrix is quintessential for minimizing fill-in during sparse matrix
factorization

Direct solvers for sparse linear systems Sparse Cholesky factorization

Nested dissection intuition

In the toy example, we note that v was a vertex separator
@ the general idea of nested dissection is to find vertex separators
recursively and put them at the end of the elimination ordering
@ a step of Cholesky/LU, graphically corresponds to eliminating a
vertex and connecting all of its neighbors together

o if we first eliminate vertices local to different graph partitions, we can
perform them independently

@ on the other hand, if we eliminate the separator between the graph
partitions, we will potentially create many new edges (fill-in) between
the two partitions

Direct solvers for sparse linear systems Sparse Cholesky factorization

Nested dissection

The nested dissection algorithm works on a sparse matrix A as follows
o let G be the graph with adjacency matrix A
@ find a small balanced vertex separator S in G

S

D

@ reorder the rows/columns of A as [V, V5, S], obtaining
A 0 Ais
A= 0 A Ags
Asi As2 As

factorize A; = L1L1T and Ay, = L2L2T recursively (in parallel)
compute Ly = L]s = Asi L] 7, Lsy = L]s = Asal; T
factorize As — Lg - L1T5 = Lng by dense Cholesky

Direct solvers for sparse linear systems Sparse Cholesky factorization

Nested dissection analysis

Lets now consider the cost of nested dissection

@ finding a good balanced vertex separator for a general graph is hard
and may not even be possible

e if the sparse matrix comes from a PDE discretization, we can subdivide
the physical domain

o for a uniform (regular) grid, we should slice the longest dimension
e Q: what is the size of a minimal balanced separator for a 2D grid? 3D?
o A: 2D |S| = O(y/n), 3D |S| = O(n?/3), dD |S| = O(n(d-1)/d)

@ with additional assumptions on the partitioning, it can be shown that
the triangular solves like A51L1_T and the update As — Lg7 - LlTS have
costs that do not asymptotically exceed the final Cholesky on an
|S| % |S| matrix

@ given this, we have the recurrence

Tep-Chol (1, d; P) = Tep-chol(n/2,d, P/2) + O(Tepoi(n@=174 PY)

Direct solvers for sparse linear systems Sparse Cholesky factorization

Nested dissection cost analysis

Lets expand the cost recurrence of Cholesky with nested dissection

Tep-Chol(n, d, P) = Tep-chol(n/2, d, P/2) + O(Tcho(nt@=1/9 P))

@ Tchol < Ty, so we can recall the cost for dense Cholesky

3(d—1)/d L2(d—1)/d
N -B+\/§-a>

@ Q: does the flop cost decrease geometrically in nested dissection?

o A: need 23(d-1)/d > 2 50 3(d —1)/d >1and (d —1)/d > 1/3,
which is always true

@ Q: does the communication cost also always decrease geometrically?

o A:yes, 22(d-1)/d ~ /2 a5 2(d —1)/d > 1/2 since (d —1)/d > 1/4

@ Q: lastly, how about the synchronization cost (« term)?

@ A: also decreases geometrically, since P does, so we obtain

Tsp—Chol(na d, P) = O(TChoI(n(d_l)/da P))

Tehol(n(d1/4 P) = O(n

Short pause

Jacobi iteration

Jacobi iteration is a basic sparse iterative method for solving Ax = b
@ start with an initial guess xg
e compute x;41 = D7}(b— (A— D)x;) where D is the diagonal of A, so

. 1 . .
10) = 55 (80) — X2 4G (0)

U.d) :

k#j

@ the expensive part is the SpMV (A — D)x;
@ slight variations can improve convergence by rescaling some terms

e if Ais a stencil, Jacobi iteration is just a simultaneous stencil
application to all nodes in the mesh

Gauss-Seidel iteration

Gauss-Seidel tries to improve convergence of Jacobi iteration by using
applications of the stencil in one part of the mesh as inputs to the next

@ this is the same as computing a sparse subset of xj;1 at every
iteration, and taking the rest to be elements of x;

@ naive Gauss-Seidel computes one element at a time and has almost
no parallelism

@ Gauss-Seidel can be seen as Bellman-Ford where edge relaxations are
done in some order and use the latest values

@ in the worst case it has as little parallelism as Dijkstra's algorithm

o Gauss-Seidel with red-black ordering tries to find an ‘ordering’ that
has parallelism, in particular a 2-coloring of the graph (partition
vertices in two sets such that each set has no internal edges), and
updates 1 color at a time

Iterative solvers for sparse linear systems Introduction

Krylov subspace methods

An m-dimensional Krylov subspace for matrix A with starting vector v is
Km(A,v) = span{v, Av, A%v.. A" 1y}

e from KCry(A, b — Axg) where X is an initial guess, we can extract a
better approximation for Ax — b
@ Krylov methods for linear systems include Arnoldi, CG, GMRES,
Lanczos and many variants of these
@ other choices of v allow computation of eigenvectors of A (A*x
converges to the eigenvector of A with the largest eigenvalue)
@ from a bird’s eye view, these methods are dominated in cost by SpMV
@ except block Krylov methods, which compute AV for tall-skinny V
o the main motivation for these is increasing (communication) efficiency
@ we can also distinguish between orthogonalized and
non-orthogonalized methods
e orhtogonalizing each iterate with the previous can improve convergence
e orthogonalization can be done by tall-skinny QR, but implies a strict
dependence between SpMV iterations

Iterative solvers for sparse linear systems Communication cost

Cost analysis of iterative methods

We already studied the cost of SpMV earlier in the course
@ given a matrix with m nonzeros, randomization and 2D blocking gives

Tspmv(n, m, P) = O<’;-V+\;ﬁ-ﬁ+log(P)-a>

where we assume v > « and point-to-point messages for latency cost

o if we have a low-order stencil (m = O(n)) on a uniform d-dimensional
grid, it makes sense to partition vertices (matrix rows)

@ we can pick out subvolumes of n/P vertices, which are connected to
O((n/P)(d=1)/9) external vertices

@ this partitioning can lower interprocessor communication cost

n n\ (d-1)/d
TSPMV'd(n7d7P)20<P'V+(P> ﬁ—i—a)

Q: how much lower is the interprocessor bandwidth cost for d = 27 37
A: a factor of ©(y/n) in 2D and ©(n'/3P/6) in 3D

Iterative solvers for sparse linear systems Communication cost

Cost comparison of sparse linear solvers

Lets compare the cost of iterative methods with that of sparse Cholesky

3(d—1)/d 2(d—1)/d
Tsp- P) = . . p.
sp-Chol(n, d, P) O(2 v+ NG B+ Ve a)

. 3(d—1)/d
the memory-bandwidth cost would be O(N)

@ let s be the number of iterations our method takes to converge
@ the total cost of a sparse iterative method with s iterations is

sn n (d=1)/d
S.TSPMV-d(n?d7P):O<P'1/+5(P> ‘ﬁ+5'0¢>

@ one can argue for the expectation, s = ©(n'/9)

nld+1)/d n "
TKr(n,d,P):O< 5 ‘V+P(d_1)/d',8+n/‘a>

e direct methods better for d = 2 and worse for d = 3?7 (apples and
oranges are both spherical)

Iterative solvers for sparse linear systems Communication-avoiding algorithms for iterative methods

Improving the cost of sparse iterative solvers

We have observed that sparse iterative methods entail a few
communication bottlenecks

o the flop-to-byte ratio is O(1) (excepting block Krylov methods and
the case of each processor fitting the whole sub-problem in cache)

@ the synchronization (latency) cost scales with the number of iterations

@ the interprocessor communication cost is non-trivial, but smaller than
the memory-bandwidth cost by a factor of ©((n/P)'/9)

@ to do better, we need to find ways to execute many SpMVs faster
than performing each one at a time

	Introduction to sparse linear systems
	Discretization
	Solvers

	Direct solvers for sparse linear systems
	Sparse Cholesky factorization

	Iterative solvers for sparse linear systems
	Introduction
	Communication cost
	Communication-avoiding algorithms for iterative methods

