
CS 598: Communication Cost Analysis of Algorithms
Lecture 2: optimal packet-based broadcast; communication cost models

Edgar Solomonik

University of Illinois at Urbana-Champaign

August 24, 2016

Brief Review of Butterfly Algorithms Allreduce

Recursive allreduce

Brief Review of Butterfly Algorithms Allreduce

Recursive allreduce

Algorithm 1 [v]← Allreduce(A,Π)

Require: Π has P processors, A is a s × P matrix, Π(j) owns A(1 : s, j)
Define ranges L = 1 : s

2 and R = s
2 + 1 : s

Let x = j + P
2 and y = j − P

2
if j ≤ P/2 then

Π(j) sends A(R, j) to Π(x) and receives A(L, x) from Π(x)

[v(L)]← Allreduce
(
A(L, j) + A(L, x),Π(1 : P

2)
)

Π(j) sends v(L) to Π(x) and receives v(R) from Π(x)
else

Π(j) sends A(L, j) to Π(y) and receives A(R, y) from Π(y)

[v(R)]← Allreduce
(
A(R, j) + A(R, y),Π(P2 + 1 : P)

)
Π(j) sends v(R) to Π(y) and receives v(L) from Π(y)

end if
Ensure: Every processor owns v = [v(L); v(R)], where v(i) =

∑P
j=1 A(i , j)

Brief Review of Butterfly Algorithms Allreduce

Allreduce cost derivation

In the recursive/butterfly allreduce, every processor

1 sends and receives one message of size s/2

2 recurses with half the processors, with A of size s/2× P/2

3 sends and receives one message of size s/2

Tα−β
allred(s,P) = Tα−β

allred(s/2,P/2) + 2 · (α + s/2 · β)

= 2
h∑

i=1

α +
s

2i
· β

≤ 2(h · α + s · β)

where h = log2(P)

Träff and Ripke Broadcast Protocol

Optimal broadcast

We will now cover a protocol for broadcast that achieves the cost,

Tα−β
bcast−TR = (

√
h · α +

√
s · β)2 ≤ 2(h · α + s · β).

The protocol presented is based on that of Träff and Ripke (2008), but is
restricted to power of two processor counts and presented differently.

The above cost is optimal, under the assumption that all messages sent
are of the same size. Note that the butterfly collectives we covered do not
adhere to this rule, but nevertheless do not have a lower cost.

Träff and Ripke Broadcast Protocol

Binomial broadcast trees in a butterfly

Träff and Ripke Broadcast Protocol

Binomial broadcast trees in a butterfly

Träff and Ripke Broadcast Protocol

Binomial broadcast trees in a butterfly

Träff and Ripke Broadcast Protocol

Binomial broadcast trees in a butterfly

Träff and Ripke Broadcast Protocol

Binomial broadcast trees in a butterfly

Träff and Ripke Broadcast Protocol

Binomial broadcast trees in a butterfly

Träff and Ripke Broadcast Protocol

Binomial broadcast trees in a butterfly

Träff and Ripke Broadcast Protocol

Binomial broadcast trees in a butterfly

Träff and Ripke Broadcast Protocol

Optimal broadcast construction

We would like to construct a set of binomial tree broadcasts that can
execute simultaneously

let the set of processors exclding broadcast root be
Π = {1, . . . , p − 1}, |Π| = 2h − 1

h binomial trees of height h with all nodes except root

S(i , j) ⊂ Π is the set of processors that send a message in the ith
level of the jth tree, i , j ∈ [0, h − 1]

|S(i , j)| = 2i

S(i , j) = Π \
⋃h−1

k=1 S(i−k mod h, j+k mod h)

for any k , the sets S(i , j) and S(i−k mod h, j+k mod h) are disjoint

so the messages in these tree levels can be sent simultaneously

given this construction, we have s/k + h messages of size k to
broadcast message of size s, with total cost

T (k) = (s/k + h) · (α + k · β), min
k

(T (k)) = (
√
h · α +

√
s · β)2

Träff and Ripke Broadcast Protocol

Optimal broadcast

A wrapped butterfly network yields the desired construction

intuition: the butterfly network has no cycles of length less than h
each level of the butterfly connects nodes one bit flip away
the broadcast root sends to node 2j mod p at step j
the root of the jth binomial tree is node 2j

the jth bit is not flipped again until that tree completes
at the ith level the senders of the jth binomial tree are

S(i , j) =
{

2j +
∑
r∈R

2j+r mod h : R ⊆ {1, . . . , i}
}

S(i , j) and S(i−k mod h, j+k mod h) are disjoint for any k, so long
as S(i , j) and S(i−k , j+k mod h) are disjoint for any k ≤ i
S(i , j) and S(i−k, j+k mod h) for k ∈ [1, h − 1] are disjoint as

S(i−k , j+k mod h) =
{

2j+k mod h +
∑
r∈R

2j+k+r mod h : R ⊆ {1, . . . , i − k}
}

won’t include elements with summand 2j since k < h & k + r ≤ i < h

Break

Not a binomial tree or butterfly

A short break!

Administrative Interlude Homework

Homeworks

First homework assignment:

posted on Piazza (join “CS 598 ES”)

please send in pdf form to solomon2@illinois.edu, with email title
including “CS 598”

should be completed using latex

if you get stuck on a problem for more than 2-3 hours, post your
thoughts on Piazza or email me

due Wednesday, Aug 31 by 9:30 am, late policy posted on website

LogP Model Point-to-Point Messaging

The LogP model

Limitations of the α–β messaging model:

both sender and receiver block until completion

a processor cannot send multiple messages simultaneously

no overlap between communication and computation

The LogP model (Culler et al. 1996) takes into account overlap by
representing the cost of sending one message (packet) in terms of

L – network latency cost (processor free)

o – sender/receiver sequential overhead (processor occupied)

g ≥ o – gap between two sends or two receives (processor free)

P – number of processors

the LogP communication cost for sending a message of s packets is

TLogP
sr (s) = 2o + L + (s − 1) · g

LogP Model Point-to-Point Messaging

Messaging in the LogP model

LogP Model Broadcasts

Broadcasts in the LogP model

Same idea as binomial tree, forward message as soon as it is received, keep
forwarding until all nodes obtain it (Karp et al. 1993)

difficult to define this tree explicitly from model parameters

LogP Model Broadcasts

Limitations of hte LogP model

The LogP model parameter g is associated with an implicit packet size
kLogP

sometimes g is disregarded and o controls bandwidth

this injection rate implies a fixed-sized packet can be sent anywhere
after a time interval of g

the implicit choice of packet size makes the model inflexible for
expressing the cost of messages of a range of sizes

LogP Model Broadcasts

Pipelined binary tree broadcast in LogP

Send a fixed-size packet to left child then to right child

as before, total message size s, tree height h ≈ log2(P)

if the LogP model datum size is kLogP bytes, the LogP cost is

TLogP
PBT (s,P) ≈ h · (L + 2g + o) + 2(s/kLogP) · g

we get this cost irrespective of the logical packet size in the protocol
k , so long as k ≥ kLogP

we can observe that there is no latency term like (s/k) · α, so the
protocol achieves noticeable overlap

LogP may be a good fit for design of hardware-specific collectives

LogP Model LogGP Extension

The LogGP model

The LogGP model (Alexandrov et al. 1997) introduces another
bandwidth parameter G , which dictates the large-message bandwidth

G – Gap per byte; time per byte (processor free)

the L, o, and g parameters are now incurred for each variable size
message, rather than packet

LogGP time for sending a message of s bytes is

TLogGP
sr (s) = 2o + L + (s − 1) · G

LogP Model LogGP Extension

The LogGP model

Diagram taken from: Alexandrov, A., Ionescu, M. F., Schauser, K. E., and Scheiman, C. LogGP: incorporating long messages

into the LogP model–one step closer towards a realistic model for parallel computation. ACM SPAA, July 1995.

LogP Model LogGP Extension

Pipelined binary tree broadcast in LogGP

Send a fixed-size packet to left child then to right child

as before, total message size s, tree height h ≈ log2(P)

if the LogP model datum size is kLogP bytes, the LogP cost is

TLogP
PBT (s,P) ≈ h · (L + 2g + o) + 2(s/kLogP) · g

in the LogGP model, we can select a packet size k and obtain the cost

TLogGP
PBT (s,P, k) ≈ h · (L + 2g + o + 2k · G) + 2(s/k) · (g + k · G)

minimizing the packet size k

kLogGP
opt (s,P) = argmin

k
(TLogGP

PBT (s,P, k))

(via e.g. differentiation by k) we obtain the optimal packet size

kLogGP
opt (s,P) =

√
s/h ·

√
g

G

so the best packet size, depends not only on architectural parameters, but
also on dynamic parameters: the number of processors and message size

LogP Model LogGP Extension

Pipelined binary tree broadcast conclusions

The LogGP and the α–β models both reflect an input and architectural
scaling dependence of the packet size

kLogGP
opt (s,P) =

√
s

h
·
√

g

G

kα,βopt (s,P) =

√
s

h
·
√
α

β

The LogGP expression is perhaps more insightful, as g appears and not L,
so the network latency overhead in the algorithm is partially overlapped.

For the majority of the course we will not analyze overlap, so we will
primarily stick to the simpler α− β model.

BSP Model Introduction

BSP model definition

The Bulk Synchronous Parallel (BSP) model (Valiant 1990) is a
theoretical execution/cost model for parallel algorithms

we consider a ‘modern’ interpretation of the model

execution is subdivided into supersteps, each associated with a
global synchronization

within each superstep each processor can send and receive up to h
messages (called an h-relation)

the cost of sending or receiving h messages of size m is h ·m · ĝ
the total cost of a superstep is the max over all processors at that
superstep

when h = 1 the BSP model is closely related to the α–β model with
β = ĝ and LogGP mode with G = ĝ

we will focus on a variant of BSP with h = P and for consistency
refer to ĝ as β and the cost of a synchronization as α

BSP Model Introduction

Synchronization vs latency

By picking h = P, we allow a global barrier to execute in the same time as
the point-to-point latency

this abstraction is good if the algorithm’s performance is not expected
to be latency-sensitive

messages become non-blocking, but progress requires a barrier

collectives can be done in linear bandwidth cost with O(1) supersteps

enables high-level algorithm development: how many collective
protocols does the algorithm need to execute?

global barrier may be a barrier of a subset of processors, if BSP is
used recursively

BSP can partition processors unevenly to design efficient schedules for
irregular applications

BSP Model Collective Communication

(Reduce-)Scatter and (All)Gather in BSP

When h = P all discussed collectives that require a single butterfly can be
done in time Tbutterfly = α + s · β i.e. they can all be done in one
superstep

Scatter: root sends each message to its target (root incurs s · β send
bandwidth)

Reduce-Scatter: each processor sends summand to every other
processor (every processor incurs s · β send and receive bandwidth)

Gather: send each message to root (root incurs s · β receive
bandwidth)

Allgather: each processor sends its portion to every other processor
(every processor incurs s · β send and receive bandwidth)

when h < P, we could perform the above algorithms using a butterfly with
‘radix’=h (number of neighbors at each butterfly level) in time
Tbutterfly = logh+1(P) · α + s · β

BSP Model Collective Communication

Other collectives in BSP

The Broadcast, Reduce, and Allreduce collectives may be done as
combinations of collectives in the same way as with Butterfly algorithms,
using two supersteps

Broadcast done by Scatter then Allgather

Reduce done by Reduce-Scatter then Gather

Allreduce done by Reduce-Scatter then Allgather

BSP preserves this hierarchical algorithmic structure and costs.

However, BSP with h = P can do all-to-all in O(s) bandwidth and O(1)
supersteps (as cheap as other collectives).

When h < P, the logarithmic factor on the bandwidth is recovered.

BSP Model PGAS Models

Nonblocking communication

Non-blocking messaging with synchronization barriers are used in practice:

MPI provides non-blocking ‘I(send/recv)’ primitives that may be
‘Wait’ed on in bulk (these are slightly slower than blocking primitives,
due to buffering)

MPI and other communication frameworks also provide one-sided
messaging which are non-blocking and zero-copy (no buffering)

one-sided communication progress must be guaranteed by a barrier on
all or a subset of processors (or MPI Win Flush between a pair)

BSP Model PGAS Models

Systems for one-sided communication

BSP employs the concept of non-blocking communication, which presents
practical challenges

to avoid buffering or additional latency overhead, the communicating
processor must know be aware of the desired buffer location of the
remote processor

if the location of the remote buffer is known, the communication is
called ‘one-sided’

with network hardware known as Remote Direct Memory Access
(RDMA) one-sided communication can be accomplished without
disturbing the work of the remote processor

One-sided communication transfers are commonly be formulated as

Put – send a message to a remote buffer

Get – receive a message from a remote buffer

BSP Model PGAS Models

Partitioned Global Address Space (PGAS)

PGAS programming models facilitate non-blocking remote memory access

they allow declaration of buffers in a globally-addressable space,
which other processors can access remotely

Unified Parallel C (UPC) is a compiler-based PGAS language that
allows indexing into globally-distributed arrays (Carlson et al. 1999)

Global Arrays (Nieplocha et al. 1994) is a library that supports a
global address space via a one-sided communication layer (e.g.
ARMCI, Nieplocha et al. 1999)

MPI supports one-sided communication via declaration of windows
that declare remotely-accessible buffers

Communication-Avoiding Algorithms Matrix Multiplication

Matrix multiplication

Matrix multiplication of n-by-n matrices A and B into C , C = A · B is
defined as, for all i , j ,

C (i , j) =
∑
k

A(i , k) · B(k , j)

A standard approach to parallelization of matrix multiplication is
commonly referred to as SUMMA (Agarwal et al. 1995, Van De Geijn et
al. 1997), which uses a 2D processor grid, so blocks Alm, Blm, and Clm are
owned by processor Π(l ,m)

SUMMA variant 1: iterate for k = 1 to
√
P and for all i , j ∈ [1,

√
P]

broadcast Aik to Π(i , :)
broadcast Bkj to Π(:, j)
compute Cij = Cij + Aik · Bkj with processor Π(i , j)

Communication-Avoiding Algorithms Matrix Multiplication

SUMMA algorithm

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

16 CPUs (4x4)

Tα,β
SUMMA = 2

√
P · Tα,β

broadcast(n
2/p,
√
P) ≤ 2

√
P · log(P) · α +

4n2

√
P
· β

Communication-Avoiding Algorithms Matrix Multiplication

3D Matrix multiplication algorithm

Reference: Agarwal et al. 1995 and others

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

64 CPUs (4x4x4)

4 copies of matrices

Tα,β
3D−MM = 2Tα,β

broadcast(n
2/P2/3,P1/3) + Tα,β

reduce(n2/P2/3,P1/3)

≤ 2 log(P) · α +
6n2

P2/3
· β

Overview

Conclusion and summary

Summary:

important parallel communication models: α–β, LogP, LogGP, BSP

collective communication: binomial trees are good for small-messages,
pipelining or butterfly good for large-messages

collective protocols provide good building blocks for parallel
algorithms

recursion is a thematic approach in collectives and
communication-efficient algorithms

Backup slides

	Brief Review of Butterfly Algorithms
	Allreduce

	Träff and Ripke Broadcast Protocol
	Break
	Administrative Interlude
	Homework

	LogP Model
	Point-to-Point Messaging
	Broadcasts
	LogGP Extension

	BSP Model
	Introduction
	Collective Communication
	PGAS Models

	Communication-Avoiding Algorithms
	Matrix Multiplication

	Overview
	Appendix

