CS 598: Communication Cost Analysis of Algorithms

Lecture 20: Communication-efficient preconditioning, domain decomposition,
graph partitioning

Edgar Solomonik
University of lllinois at Urbana-Champaign

October 31, 2016

Approximate ILU and AL Computing ILU iteratively

lterative computation of |LU

Recent idea: Chow and Patel, " Fine-Grained Parallel Incomplete LU
Factorization”, 2015

o interpret ILU factorization as system of bilinear equations

e the unknowns are Lj for i < j, U for i > j with (i,j) € S and we
have constraints/objectives

min(i,f)
> LuUg=Ay V(ij)eS
@ can be reformulated as (L, U) = F(L, U), where function F performs

1 gl
Lij = U—JJ (Aij — kz_:l Lik Ukj)7 Uij = Ajj Z Lix Uy

e use equations as fixed-point iteration (L(h+1) ((h+1)y = F(L(M) (k)

Approximate ILU and AL Computing ILU iteratively

lterative computation of |ILU, contd.

We can consider applying the equations in JF in various orderings
@ use latest available values of L and U entries
the “Gaussian elimination ordering” just computes ILU as before
other orderings have more parallelism but slower convergence
need a good starting guess to speed-up convergence
approximate solution ok, exact ILU is an inexact factorization anyway

convergence in k fixed-point iterations implies factor of k more work

Q: is changing the ordering of equations the same as changing the
order of rows/cols in standard ILU?

@ A: no they are generally different, the latter changes the dependency
graph, the former just changes the order of ‘relaxations’ of its edges

Iterative computation of ILU for cube DAG

Recall n1/3 x n!/3 x n!/3 cube DAG

@ standard cube DAG execution had cost

TiLU[0]-cube (N, P) = (”/P v+ \;/»3 B+VP- Ot)
@ iterative computation with k iterations has cost
n2/3
TiLU[O-iter-cube (N, Py k) = (k”/P v+ kP2/3 B+ k- a)

o with Gaussian-elimination ordering within blocks k = O(v/P)

e when k = /P, iterative approach does factor of /P more work and
P'/3 more communication

@ however, if we get a satisfactory ILU in k = O(1) iterations, obtain
©(P/®) less communication and ©(+/P) fewer synchronizations

Approximate ILU and AL Approximating AL iteratively

Approximating the inverse

Rather than looking for A~ M = LU to apply M~!, we can try to directly
approximate W = M1 ~ A™1

formally, we will try to minimize ||/ — AW/||%
we would like W to be sparse, while A~1 may be dense
we can write this again as an optimization problem which minimizes

min||ej — Aw |3

where w;, ¢; are the jth columns of W,/
we can compute each w; by a sparse iterative method with a sparse
initial guess and try to preserve sparsity

e each SpMSpV will spread nonzeros, so we can try doing O(1) iterations

e or we can compute (some approximation to) the full vector, then drop
small entries

@ to lower number of parallel steps, can compute many w; at a time
o key benefit: applying the preconditioner is SpMV and not TRSV

Polynomial Preconditioning Polynomial bases

Polynomial preconditioning
Motivation and definition
@ recall that we can write the inverse of A in terms of
SX)=T+X+X24+X3...
as §(X) — S(X)X = I and therefore
S(I—A) =Sl -A)(I-A) =S -AA=1

so A7t =S(I - A)

o further, recall that in Krylov subspace methods, we want to span the
space {x, Ax, A’x....}

@ the idea of polynomial preconditioning is to use the preconditioner
M~1 = p(A) and solve

p(A)Ax = p(A)b

where p(A) is a polynomial in A
@ Chebyshev polynomials improve conditioning for many systems

Polynomial Preconditioning Polynomial bases

Applying a polynomial preconditioner

Polynomial preconditioners are very easy to apply
e never compute p(A) explicitly, but compute p(A)v by steps of the
form z + Aw
@ in contrast to ILU there is no triangular solve to perform
@ in-time blocking to avoid communication is now possible
@ not just possible, but necessary in practice to achieve numerical stability

@ unfortunately this simple preconditioner is not as effective as methods
that spread information globally, such as multigrid
e expect to improve convergence by order of polynomial, but need to do
as many more SpMVs

NS
Short pause

Domain Decomposition Partitioning the domain

Partitioning

General idea in domain decomposition
@ assign a subdomain to each processor
@ solve independent problems on inner subdomains in parallel

@ work with reduced problem to resolve domain boundaries

Domain Decomposition Partitioning the domain

Partitioning in matrix form

Vertex partitioning into 3 parts = row/column ordered adjacency matrix:
B 0 0 E O 0
0 B, 0 0 E O
A [B E] 10 0 B O 0 E

Fr 0 0 Gi G2 Gs
0 R 0 GCi G Gs
0 0 R G Gy Gasl

where Cj; = 0 if boundaries of partition i and j are disconnected
@ B encodes edges between inner nodes in each subdomain
@ E and F are the connections between inner nodes and boundary of
each subdomain
@ C are the connections between boundaries of different subdomains
@ a good partitioning should have C of much smaller dimension than B
@ when the number of partitions is large, C can be very sparse

Domain Decomposition Schur complement methods

Schur complement methods

Consider the partitioned matrix A = [B E}

@ a block LU factorization would co,:npuc’;e the Schur complement
C-FB'E
@ the Schur complement allows us to solve linear equations
F db)-1d
F C||y g
@ first write x in terms of y
Bx+Ey=f = x=Bf-BlEy
@ the substitute x into the second equation Fx + Cy = g
FB'f —-FB'Ey+Cy=g = (C—FB 'E)y=g-FB'f

e computing B~1E and B~1f would allow us to solve a new set of
linear systems to get y and cheaply compute x

Domain Decomposition Schur complement methods

Schur complement preconditioning

Our main problem is to solve (C — FB71E)y = g — FB~1f
@ recall that B is block diagonal and E, F are also structured
e computing E’ = B~1E can be done via E! = BflE; for each i
e yields coefficients for equations between boundary vertices within each

subdomain
e E/ is usually dense, unlike B;

e computing f' = B71f can also be done via f/ = Bi_lf,- for each i

o solves within each subdomain, transforming linear system
@ we now have (C — FE')y = g — Ff’

e can obtain explicit form of linear system by multiplications alone
e FE’ is block diagonal with blocks F;E/

Domain Decomposition Schur complement methods

Cost of Schur complement preconditioning

We will usually have P partitions (one per processor)
@ the reduction to the new linear system is embarrassingly parallel

@ interprocessor communication cost is effectively zero

@ if number of vertices in each domain is n/P and each boundary has
(n/P)(d=1)/d vertices
o Q: what is the dimension of C?
o A: P-(n/P)d=1/d = p(pP/n)t/d
o the fill we create by the Schur complement updates connects all nodes
within each subdomain boundary
@ so the number of new nonzeros in C is roughly

2 pd-1)/d
d—1)/d —
P((o/PYI) =

for d = 2 this is n, so about as many nonzeros as in A
for d = 3 this is n*/3/P/3, which is O(n/3/P*/3) more than in A

Domain Decomposition Schur complement methods

Implicit Schur complement preconditioning

Rather than computing C — FB™LE, we can solve the linear system
(C—FB'E)y=g—FB'f

by computing z = (F(B~1(Ew))) whenever necessary
e requires an ‘inner’ method for solving B~1(Ew)

@ for each stencil application to the reduced system, we propagate
information fully within each subdomain

@ more useful computation performed within the local subdomains, for
the same communication cost

@ a downside is that its not possible to do in-time blocking

Coordinate-based partitioning

Domain decomposition methods require graph partitioning
o first consider partitioning graphs embedded in d-dimensional space
@ we expect to have coordinates for finite element meshes
@ to get good partitions, still need to tie connectivity to locality
°

Miller, Teng, Thurston, and Vavasis (1997) provide a good notion of
locality and an efficient graph partitioning algorithm

Fic. 1. A 3-ply system.

k-ply neighborhood is a set of n balls with < k intersecting anywhere

@ local graphs of interest can be embedded into k-ply neighborhoods

Partitioning of k-ply neighborhoods

Miller, Teng, Thurston, and Vavasis (1997) give an algorithm to find a
sphere that partitions a neighborhood and intersects O(kl/dn(d_l)/d) balls

o translates into vertex separators of size O(n{?=1)/9) for meshes with
constant aspect ratio — max relative distance of edges in space

@ algorithm based on finding centerpoints, every hyperplane that
includes one is a good partition

@ centerpoints can be computed by a linear program and
well-approximated by computing centerpoints of small random subsets

Coordinate-free partitioning

Graph partitioning is much harder to do in general

@ some techniques leverage BFS or graph hierarchies constructed using
maximal independent sets

@ spectral partitioning is an elegant algebraic approach
o the Laplacian matrix L of a graph G = (V,E) is

o the eigenvector of L with the second smallest eigenvalue (the Fiedler
vector) provides a good partition of G!

Graph Partitioning ~ Spectral methods

The Fiedler vector

Why is the second smallest eigenvector w useful?
@ the smallest eigenvector has eigenvalue zero and is a constant vector

Z Ljj = degree(V/(i)) + Z -1=0
J (ij)eE

@ we can define two partitions by sorting w and taking the smallest n/2
values to be one partition
consider two equal partitions V4 and V, with a cut nc = |V4 X Vo N E]
define vector v to be 1 for all vertices in Vq and —1 for vertices in V5,
Q: if n. = 0 what would like Lv look like?
A: Lv = 0, if we order vertices in V4 before V5 to define L and v,

. L1 0 Vi . Ll Vi o
S CO | P B
where L1 and Ly are Laplacians of disjoint subgraphs and vy, v» are
constant vectors

Graph Partitioning ~ Spectral methods

Partitioning using the Fiedler vector

More generally, we have
Ly — [Lll L21] |:V1:|
Lip Ly [v2
where for undirected graphs || vec(L12)||1 = || vec(L21)|]1 = nc
@ now note that Ly;v> > 0 is added to (positive vector) v and
Lipv; < 0 is added to (negative vector) v
@ so the vectors representing the two partitions grow depending on how
many edges there arein Vi x Vo N E
@ the smallest eigenvector has one cluster of vertices and eigenvalue 0

@ the second smallest eigenvector provides an imbalance (partitioning)
with minimal resistance (push-back between the partitions)

	Approximate ILU and A-1
	Computing ILU iteratively
	Approximating A-1 iteratively

	Polynomial Preconditioning
	Polynomial bases

	Domain Decomposition
	Partitioning the domain
	Schur complement methods

	Graph Partitioning
	Mesh partitioning
	Spectral methods

