
CS 598: Communication Cost Analysis of Algorithms
Lecture 20: Communication-efficient preconditioning, domain decomposition,

graph partitioning

Edgar Solomonik

University of Illinois at Urbana-Champaign

October 31, 2016

Approximate ILU and A−1 Computing ILU iteratively

Iterative computation of ILU

Recent idea: Chow and Patel, ”Fine-Grained Parallel Incomplete LU
Factorization”, 2015

interpret ILU factorization as system of bilinear equations

the unknowns are Lij for i < j , Uij for i ≥ j with (i , j) ∈ S and we
have constraints/objectives

min(i ,j)∑
k=1

LikUkj = Aij , ∀(i , j) ∈ S

can be reformulated as (L,U) = F(L,U), where function F performs

Lij =
1

Ujj

(
Aij −

j−1∑
k=1

LikUkj

)
, Uij = Aij −

i−1∑
k=1

LikUkj

use equations as fixed-point iteration (L(h+1),U(h+1)) = F(L(h),U(h))

Approximate ILU and A−1 Computing ILU iteratively

Iterative computation of ILU, contd.

We can consider applying the equations in F in various orderings

use latest available values of L and U entries

the “Gaussian elimination ordering” just computes ILU as before

other orderings have more parallelism but slower convergence

need a good starting guess to speed-up convergence

approximate solution ok, exact ILU is an inexact factorization anyway

convergence in k fixed-point iterations implies factor of k more work

Q: is changing the ordering of equations the same as changing the
order of rows/cols in standard ILU?

A: no they are generally different, the latter changes the dependency
graph, the former just changes the order of ‘relaxations’ of its edges

Approximate ILU and A−1 Computing ILU iteratively

Iterative computation of ILU for cube DAG

Recall n1/3 × n1/3 × n1/3 cube DAG

standard cube DAG execution had cost

TILU[0]-cube(n,P) = O
(
n/P · γ +

n2/3√
P
· β +

√
P · α

)
iterative computation with k iterations has cost

TILU[0]-iter-cube(n,P, k) = O
(
kn/P · γ + k

n2/3

P2/3
· β + k · α

)
with Gaussian-elimination ordering within blocks k = O(

√
P)

when k =
√
P, iterative approach does factor of

√
P more work and

P1/3 more communication

however, if we get a satisfactory ILU in k = O(1) iterations, obtain
Θ(P1/6) less communication and Θ(

√
P) fewer synchronizations

Approximate ILU and A−1 Approximating A−1 iteratively

Approximating the inverse

Rather than looking for A ≈ M = LU to apply M−1, we can try to directly
approximate W = M−1 ≈ A−1

formally, we will try to minimize ||I − AW ||2F
we would like W to be sparse, while A−1 may be dense

we can write this again as an optimization problem which minimizes

min
wj

||ej − Awj ||22

where wj , ej are the jth columns of W , I
we can compute each wj by a sparse iterative method with a sparse
initial guess and try to preserve sparsity

each SpMSpV will spread nonzeros, so we can try doing O(1) iterations
or we can compute (some approximation to) the full vector, then drop
small entries

to lower number of parallel steps, can compute many wj at a time

key benefit: applying the preconditioner is SpMV and not TRSV

Polynomial Preconditioning Polynomial bases

Polynomial preconditioning

Motivation and definition

recall that we can write the inverse of A in terms of

S(X) = I + X + X 2 + X 3 . . .

as S(X)− S(X)X = I and therefore

S(I − A)− S(I − A)(I − A) = S(I − A)A = I

so A−1 = S(I − A)

further, recall that in Krylov subspace methods, we want to span the
space {x ,Ax ,A2x}
the idea of polynomial preconditioning is to use the preconditioner
M−1 = ρ(A) and solve

ρ(A)Ax = ρ(A)b

where ρ(A) is a polynomial in A

Chebyshev polynomials improve conditioning for many systems

Polynomial Preconditioning Polynomial bases

Applying a polynomial preconditioner

Polynomial preconditioners are very easy to apply

never compute ρ(A) explicitly, but compute ρ(A)v by steps of the
form z + Aw

in contrast to ILU there is no triangular solve to perform

in-time blocking to avoid communication is now possible

not just possible, but necessary in practice to achieve numerical stability

unfortunately this simple preconditioner is not as effective as methods
that spread information globally, such as multigrid

expect to improve convergence by order of polynomial, but need to do
as many more SpMVs

Short pause

Domain Decomposition Partitioning the domain

Partitioning

General idea in domain decomposition

assign a subdomain to each processor

solve independent problems on inner subdomains in parallel

work with reduced problem to resolve domain boundaries

Domain Decomposition Partitioning the domain

Partitioning in matrix form

Vertex partitioning into 3 parts ⇒ row/column ordered adjacency matrix:

A =

[
B E
F C

]
=



B1 0 0 E1 0 0
0 B2 0 0 E2 0
0 0 B3 0 0 E3

F1 0 0 C11 C12 C13

0 F2 0 C21 C22 C23

0 0 F3 C31 C32 C33


where Cij = 0 if boundaries of partition i and j are disconnected

B encodes edges between inner nodes in each subdomain

E and F are the connections between inner nodes and boundary of
each subdomain

C are the connections between boundaries of different subdomains

a good partitioning should have C of much smaller dimension than B

when the number of partitions is large, C can be very sparse

Domain Decomposition Schur complement methods

Schur complement methods

Consider the partitioned matrix A =

[
B E
F C

]
a block LU factorization would compute the Schur complement

C − FB−1E

the Schur complement allows us to solve linear equations[
B E
F C

] [
x
y

]
=

[
f
g

]
first write x in terms of y

Bx + Ey = f ⇒ x = B−1f − B−1Ey

the substitute x into the second equation Fx + Cy = g

FB−1f − FB−1Ey + Cy = g ⇒ (C − FB−1E)y = g − FB−1f

computing B−1E and B−1f would allow us to solve a new set of
linear systems to get y and cheaply compute x

Domain Decomposition Schur complement methods

Schur complement preconditioning

Our main problem is to solve (C − FB−1E)y = g − FB−1f

recall that B is block diagonal and E , F are also structured

computing E ′ = B−1E can be done via E ′i = B−1i Ei for each i

yields coefficients for equations between boundary vertices within each
subdomain
E ′i is usually dense, unlike Bi

computing f ′ = B−1f can also be done via f ′i = B−1i fi for each i

solves within each subdomain, transforming linear system

we now have (C − FE ′)y = g − Ff ′

can obtain explicit form of linear system by multiplications alone
FE ′ is block diagonal with blocks FiE

′
i

Domain Decomposition Schur complement methods

Cost of Schur complement preconditioning

We will usually have P partitions (one per processor)

the reduction to the new linear system is embarrassingly parallel

interprocessor communication cost is effectively zero

if number of vertices in each domain is n/P and each boundary has
(n/P)(d−1)/d vertices

Q: what is the dimension of C?
A: P · (n/P)(d−1)/d = n(P/n)1/d

the fill we create by the Schur complement updates connects all nodes
within each subdomain boundary
so the number of new nonzeros in C is roughly

P
(

(n/P)(d−1)/d
)2

=
n2(d−1)/d

P(d−2)/d

for d = 2 this is n, so about as many nonzeros as in A
for d = 3 this is n4/3/P1/3, which is O(n1/3/P1/3) more than in A

Domain Decomposition Schur complement methods

Implicit Schur complement preconditioning

Rather than computing C − FB−1E , we can solve the linear system

(C − FB−1E)y = g − FB−1f

by computing z = (F (B−1(Ew))) whenever necessary

requires an ‘inner’ method for solving B−1(Ew)

for each stencil application to the reduced system, we propagate
information fully within each subdomain

more useful computation performed within the local subdomains, for
the same communication cost

a downside is that its not possible to do in-time blocking

Graph Partitioning Mesh partitioning

Coordinate-based partitioning

Domain decomposition methods require graph partitioning

first consider partitioning graphs embedded in d-dimensional space

we expect to have coordinates for finite element meshes

to get good partitions, still need to tie connectivity to locality

Miller, Teng, Thurston, and Vavasis (1997) provide a good notion of
locality and an efficient graph partitioning algorithm

k-ply neighborhood is a set of n balls with ≤ k intersecting anywhere

local graphs of interest can be embedded into k-ply neighborhoods

Graph Partitioning Mesh partitioning

Partitioning of k-ply neighborhoods

Miller, Teng, Thurston, and Vavasis (1997) give an algorithm to find a
sphere that partitions a neighborhood and intersects O(k1/dn(d−1)/d) balls

translates into vertex separators of size O(n(d−1)/d) for meshes with
constant aspect ratio – max relative distance of edges in space
algorithm based on finding centerpoints, every hyperplane that
includes one is a good partition
centerpoints can be computed by a linear program and
well-approximated by computing centerpoints of small random subsets

Graph Partitioning Spectral methods

Coordinate-free partitioning

Graph partitioning is much harder to do in general

some techniques leverage BFS or graph hierarchies constructed using
maximal independent sets

spectral partitioning is an elegant algebraic approach

the Laplacian matrix L of a graph G = (V ,E) is

Lij =


i = j : degree(V (i))

(i , j) ∈ E : −1

(i , j) /∈ E : 0

the eigenvector of L with the second smallest eigenvalue (the Fiedler
vector) provides a good partition of G!

Graph Partitioning Spectral methods

The Fiedler vector

Why is the second smallest eigenvector w useful?

the smallest eigenvector has eigenvalue zero and is a constant vector∑
j

Lij = degree(V (i)) +
∑

(i ,j)∈E

−1 = 0

we can define two partitions by sorting w and taking the smallest n/2
values to be one partition

consider two equal partitions V1 and V2 with a cut nc = |V1×V2 ∩E |
define vector v to be 1 for all vertices in V1 and −1 for vertices in V2

Q: if nc = 0 what would like Lv look like?

A: Lv = 0, if we order vertices in V1 before V2 to define L and v ,

Lv =

[
L1 0
0 L2

] [
v1
v2

]
=

[
L1v1
L2v2

]
= 0

where L1 and L2 are Laplacians of disjoint subgraphs and v1, v2 are
constant vectors

Graph Partitioning Spectral methods

Partitioning using the Fiedler vector

More generally, we have

Lv =

[
L11 L21
L12 L22

] [
v1
v2

]
where for undirected graphs || vec(L12)||1 = || vec(L21)||1 = nc

now note that L21v2 > 0 is added to (positive vector) v1 and
L12v1 < 0 is added to (negative vector) v2

so the vectors representing the two partitions grow depending on how
many edges there are in V1 × V2 ∩ E

the smallest eigenvector has one cluster of vertices and eigenvalue 0

the second smallest eigenvector provides an imbalance (partitioning)
with minimal resistance (push-back between the partitions)

	Approximate ILU and A-1
	Computing ILU iteratively
	Approximating A-1 iteratively

	Polynomial Preconditioning
	Polynomial bases

	Domain Decomposition
	Partitioning the domain
	Schur complement methods

	Graph Partitioning
	Mesh partitioning
	Spectral methods

