
CS 598: Communication Cost Analysis of Algorithms
Lecture 22: Randomized algorithms for low-rank matrix factorization and

least-squares

Edgar Solomonik

University of Illinois at Urbana-Champaign

November 7, 2016

Low-rank decompositions Conversion between factorizations

Short-term lecture plan

This lecture will start with randomized algorithms

we will cover methods for computing tensor factorizations
subsequently, since they can solve more general problems

our presentation of randomized algorithms follows the paper

Halko, Martinsson, Tropp “Finding structure with randomness:
stochastic algorithms for constructions approximate matrix
decompositions”

a quote from the above paper,
“The disappointing computational profile of Monte Carlo integration
seems to have inspired a distaste for randomized approaches within
the scientific community. Fortunately, there are many other types of
randomized algorithms–such as the ones in this paper–that do not
suffer from the same shortcomings.”

Low-rank decompositions Conversion between factorizations

Approximate low-rank factorizations

Given matrix A ∈ Rm×n, find X ∈ Rm×k ,Y ∈ Rn×k with k ≤ min(m, n) so

||A− XY T ||F ≤ ε

if A = XY T (exact low rank factorization), we can
obtain A = QRΠ via

1 [Q1,R1] = QR(X)
2 [Q2,R,Π] = QRP(R1Y

T)
3 Q = Q1Q2

Q: how many operations does this require?
A: O(mk2 + nk2)
obtain A = UDV T via

1 [U1,R] = QR(X)
2 [U2,D,V] = SVD(RY T)
3 U = U1U2

again with cost O(mk2 + nk2)

in exact arithmetic these transformations also preserve error ε

Low-rank decompositions Basic randomized factorization

Randomization basics

Intuition: consider a random vector w of dimension n

also consider any basis Q for the n dimensional space

with high probability (w.h.p) w is not orthogonal to any row of QT

moreover, consider A ∈ Rm×n with exact rank k

A = UDV T where V T ∈ Rn×k

w.h.p vector w is not orthogonal to any row of V T

moreover z = V Tw is random

therefore Aw = UDz is random linear combination of columns of UD

now consider random matrix W ∈ Rn×k

columns of B = AW are random linear combinations of those in UD

Q: will the columns of B be linearly independent?

A: yes, w.h.p. and then B has the same span as U!

Low-rank decompositions Basic randomized factorization

Using the basis to compute a factorization

If B has the same span as the range of A

[Q,R] = QR(B) gives orthogonal basis Q for B

QQTA = QQTUDV T = (QQTU)DV T , now QTU is orthogonal and
so QQTU is a basis for the range of A

so compute H = QTA, H ∈ Rk×n and compute [U1,D,V] = SVD(H)

then compute U = QU1 and we have a rank k SVD of A

A = UDV T

matrix multiplications required O(mnk) operations

QR and SVD required O((m + n)k2) operations

Q: why is this be preferable to QR with column pivoting?

A: if k � min(m, n) the bulk of the computation is within matrix
multiplication, which can be done with fewer synchronizations and
higher efficiency

Low-rank decompositions Basic randomized factorization

Randomized approximate factorization

Now lets consider the case when A = UDV T + E where D ∈ Rk×k and E
is a small perturbation

E may be noise in data or numerical error

to obtain a basis for U it is insufficient to multiply by random
B ∈ Rn×k , due to influence of E

however, oversampling, for instance l = k + 10, and random
B ∈ Rn×l gives good results

a Gaussian random distribution provides particularly good accuracy

Q: so far the dimension of B has assumed knowledge of the target
approximate rank k , what could we do to find it dynamically?

A: generate vectors (columns of B) one at a time or a block at a
time, which results in a provably accurate basis

Low-rank decompositions Basic randomized factorization

Cost analysis of randomized low-rank factorization

From previous lecture, the BSP cost of QR with column pivoting is

TQRP(m, n, k,P) = O

(
mnk

P
· γ + k

√
mn

P
· β + k

√
P

mn
log(P)2 · α

)
which can be obtained by selecting pr/pc = m/n and b = n/(pc log2(P))

TQRP(n, n, k ,P) = O
(
n2k
P · γ + nk√

P
· β + (k/n)

√
P log(P)2 · α

)
the cost of the randomized algorithm for is

TMM(m, n, k ,P) + TQR(m, k , k,P) = O

(
mnk

P
· γ

+

(
mnk

P

)2/3

· β +

(
Pk

m

)2/3

log(P) · α
)

assuming that we factorize the basis by QR and k × k SVD of R

Low-rank decompositions Structured randomized factorization

Exploiting structured randomization

We can lower the number of operations needed by the randomized
algorithm by generating B so that AB can be computed more rapidly

there are different ways to generate B in this way, most look like

B = DFR

D is diagonal with elements randomly chosen from some space
F can be applied to a vector in O(n log(n)) operations

can be actual discrete Fourier transform

can also be real, for instance Hadamard transform H2n =

[
Hn Hn

Hn −Hn

]
R is p ≈ k columns of the n × n identity matrix
we can then compute AB with O(mn log(n)) operations (if m > n)

in fact O(mn log(k)) if a subsampled FFT algorithm is used

Low-rank decompositions Structured randomized factorization

Cost of structured randomized factorization

Instead of matrix multiplication, we apply m FFTs of dimension n

Q: if m > P, how much communication is required in BSP?

A: each FFT is independent, so a transpose, O(mn/P)

so we have the following total cost

O

(
mn log(n)

P
· γ +

mn

P
· β
)

+ TQR(m, k, k,P) = O

(
mn log(n) + mk2

P
· γ

+

[
mn

P
+

(
mk2

P

)2/3]
· β +

(
Pk

m

)2/3

log(P) · α
)

assuming m > n

this is lower by a factor of (n/k)2/3 with respect to the previous
randomized version

we should be able to lower communication cost by transposing A so
that m ≤ n (but we need max(m + n)k2/P computation)

Short pause

Randomized least squares Rokhlin–Tygert algorithm

Least squares

Given A ∈ Rm×n, m ≥ n, would like to approximate

y = argmin
x
||Ax − b||2

by finding x within relative error ε, so that

||Ax − b||2 − ||Ay − b||2 ≤ ε||Ay − b||2

QR-based methods require O(mn2) computation

randomization yields costs

O(mn log(n) + mn log(1/ε) + n3)

Randomized least squares Rokhlin–Tygert algorithm

Rokhlin–Tygert (2008)

Again leverages subsampled Fourier-Transform (SRFT) or similar
structured random matrix

define SRFT T ∈ Rl×m where m ≥ l ≥ n (transpose of previous)
1 compute E = TA and E = QX , X = RΠ using column pivoting
2 solve for v in ||Ev − Tb||2 using E = QX
3 solve for w in ||AX−1w − b||2 using iterative method with v as starting

guess, to relative precision ε
4 compute x = X−1w

key idea: AX−1 has low condition number w.h.p. so iterative method
like CG or LSQR converges in O(log(1/ε)) iterations
if so the number of operations per step is

1 O(mn log(l)) + O(n2l)
2 cheap O(m log(l) + nl + n2)
3 O(mn log(1/ε))
4 cheap O(n2)

Tygert and Rokhlin theoretically need l > 4n2 but observe that l = 4n
gets condition number ≤ 3 in all tests

Randomized least squares Rokhlin–Tygert algorithm

Analysis of randomized least squares algorithm

Lets consider the case of a very tall-and-skinny matrix, with m ≥ nP

the QR and triangular solves needed for preconditioning are then
relatively cheap

we need to consider the initial SRFT product and the matrix-vector
products in the iterative method

we can use a 1D row-blocked layout of A to make the communication
cost of matrix-vector products in the iterative method small,
O(n log(1/ε) · β + log(1/ε) · α)

for the SRFT, if n > P, we can transpose and compute the FFT with
cost

O(mn/P · β + α)

otherwise, it makes sense to compute each FFT using all P processors
at the same time

Q: what would be the BSP communication cost then?

A: O(mn logn/P(n)/P · β + logn/P(n) · α)

Randomized least squares Rokhlin–Tygert algorithm

Comparison between randomized methods

Recall the 1D QR row-recursive algorithm achieves the BSP complexity

O(n2 log(P) · β + log(P) · α)

this is a bit more than the cost of SRFT when m ≈ nP

when m is very large the 1D algorithm may be faster than SRFT

however, it may be possible to do SRFT faster by using the fact that
the FFT is subsampled

the SRFT may also have a relatively higher cache complexity

a better characterization of the communication complexity of
randomized least squares is an open question

Randomized least squares Rokhlin–Tygert algorithm

Practical performance on least squares

Recent performance studies show that an algorithm based on the
Tygert-Rokhlin technique can outperform LAPACK

Avron, Maymoukov, and Toledo, “Blendenpick: supercharging
LAPACK’s least-squares solver”, 2010

tested dense high overdetermined (m� n) systems

uses LSQR for iterative solver, Hadamard transforms using FFTW

LAPACK implementation may not have used the most cache-efficient
QR in this case

Randomized least squares Row sampling

Leverage scores

The SRFT can be seen as a row-mixing algorithm

by taking linear combinations of rows, the projection is guaranteed to
captures the range well

in fact, its possible to just extract a sample of the rows

however, an oblivious sampling technique is not robust, for instance
when a matrix column is nonzero only for one row and we don’t
include this row in the sample

sampling based on leverage scores: l ∈ Rm provide guarantees of
accuracy

l(i) =
k∑

i=1

U(i , k)2

where A = UDV T , so U are the singular vectors of A

Randomized least squares Row sampling

Computing leverage scores

Obtaining leverage scores can be done by randomized projections

can again leverage SRFT-like transforms

see Magdon-Ismail, Mahoney, Woodruff “Fast approximation of
matrix coherence and statistical leverage”, 2012

they compute all leverage scores in time O(mn log(n))

algorithm consists of the same building blocks, SRFT projection,
QR/SVD on smaller matrix

Sparse low-rank factorizations Projection-based methods

Low-rank factorization for sparse matrices

If we want to obtain a low-rank approximate factorization for sparse A

QR with pivoting or SVD are expensive and complicated due to fill

Krylov subspace methods can be used to construct a basis for
{x ,Ax ,A2x , . . . ,Akx} and form a factorization

randomized projections provide an attractive alternative

makes less sense to use SRFT than n × l Gaussian random matrix B
computation of AB can be done all at once, and so is more efficient in
communication and synchronization than O(k) steps of iterative
methods
if high accuracy guarantees are necessary, can use power iteration

(AAT)qAB

in place if AB, improving accuracy exponentially with q

	Low-rank decompositions
	Conversion between factorizations
	Basic randomized factorization
	Structured randomized factorization

	Randomized least squares
	Rokhlin–Tygert algorithm
	Row sampling

	Sparse low-rank factorizations
	Projection-based methods

