CS 598: Communication Cost Analysis of Algorithms Lecture 22: Randomized algorithms for low-rank matrix factorization and least-squares

Edgar Solomonik

University of Illinois at Urbana-Champaign

November 7, 2016

Short-term lecture plan

This lecture will start with randomized algorithms

- we will cover methods for computing tensor factorizations subsequently, since they can solve more general problems
- our presentation of randomized algorithms follows the paper
 - Halko, Martinsson, Tropp "Finding structure with randomness: stochastic algorithms for constructions approximate matrix decompositions"
- a quote from the above paper,

"The disappointing computational profile of Monte Carlo integration seems to have inspired a distaste for randomized approaches within the scientific community. Fortunately, there are many other types of randomized algorithms—such as the ones in this paper—that do not suffer from the same shortcomings."

Approximate low-rank factorizations

Given matrix $A \in \mathbb{R}^{m \times n}$, find $X \in \mathbb{R}^{m \times k}$, $Y \in \mathbb{R}^{n \times k}$ with $k \leq \min(m, n)$ so

$$||A - XY^T||_F \le \varepsilon$$

• if $A = XY^T$ (exact low rank factorization), we can

• obtain $A = QR\Pi$ via

1
$$[Q_1, R_1] = QR(X)$$

2 $[Q_2, R, \Pi] = QRP(R_1Y^T)$
3 $Q = Q_1Q_2$

• Q: how many operations does this require?

• A:
$$O(mk^2 + nk^2)$$

obtain A = UDV^T via

$$[U_1, R] = QR(X) [U_2, D, V] = SVD(RY^T)$$

$$U = U_1 U_2$$

• again with cost $O(mk^2 + nk^2)$

• in exact arithmetic these transformations also preserve error arepsilon

Randomization basics

Intuition: consider a random vector w of dimension n

- also consider any basis Q for the n dimensional space
- with high probability (w.h.p) w is not orthogonal to any row of Q^T
- moreover, consider $A \in \mathbb{R}^{m \times n}$ with exact rank k

•
$$A = UDV^T$$
 where $V^T \in \mathbb{R}^{n imes k}$

- w.h.p vector w is not orthogonal to any row of V^T
- moreover $z = V^T w$ is random
- therefore Aw = UDz is random linear combination of columns of UD
- now consider random matrix $W \in \mathbb{R}^{n \times k}$
- columns of B = AW are random linear combinations of those in UD
- Q: will the columns of B be linearly independent?
- A: yes, w.h.p. and then B has the same span as U!

Using the basis to compute a factorization

If B has the same span as the range of A

- [Q, R] = QR(B) gives orthogonal basis Q for B
- QQ^TA = QQ^TUDV^T = (QQ^TU)DV^T, now Q^TU is orthogonal and so QQ^TU is a basis for the range of A
- so compute $H = Q^T A$, $H \in \mathbb{R}^{k \times n}$ and compute $[U_1, D, V] = SVD(H)$
- then compute $U = QU_1$ and we have a rank k SVD of A

$$A = UDV^{T}$$

- matrix multiplications required O(mnk) operations
- QR and SVD required $O((m+n)k^2)$ operations
- Q: why is this be preferable to QR with column pivoting?
- A: if k ≪ min(m, n) the bulk of the computation is within matrix multiplication, which can be done with fewer synchronizations and higher efficiency

Randomized approximate factorization

Now lets consider the case when $A = UDV^T + E$ where $D \in \mathbb{R}^{k \times k}$ and E is a small perturbation

- E may be noise in data or numerical error
- to obtain a basis for U it is insufficient to multiply by random $B \in \mathbb{R}^{n \times k}$, due to influence of E
- however, oversampling, for instance l = k + 10, and random $B \in \mathbb{R}^{n \times l}$ gives good results
- a Gaussian random distribution provides particularly good accuracy
- Q: so far the dimension of *B* has assumed knowledge of the target approximate rank *k*, what could we do to find it dynamically?
- A: generate vectors (columns of *B*) one at a time or a block at a time, which results in a provably accurate basis

Cost analysis of randomized low-rank factorization

From previous lecture, the BSP cost of QR with column pivoting is

$$T_{\text{QRP}}(m, n, k, P) = O\left(\frac{mnk}{P} \cdot \gamma + k\sqrt{\frac{mn}{P}} \cdot \beta + k\sqrt{\frac{P}{mn}}\log(P)^2 \cdot \alpha\right)$$

which can be obtained by selecting $p_r/p_c = m/n$ and $b = n/(p_c \log^2(P))$

•
$$T_{\text{QRP}}(n, n, k, P) = O\left(\frac{n^2k}{P} \cdot \gamma + \frac{nk}{\sqrt{P}} \cdot \beta + (k/n)\sqrt{P}\log(P)^2 \cdot \alpha\right)$$

• the cost of the randomized algorithm for is

$$T_{MM}(m, n, k, P) + T_{QR}(m, k, k, P) = O\left(\frac{mnk}{P} \cdot \gamma + \left(\frac{mnk}{P}\right)^{2/3} \cdot \beta + \left(\frac{Pk}{m}\right)^{2/3} \log(P) \cdot \alpha\right)$$

• assuming that we factorize the basis by QR and $k \times k$ SVD of R

Exploiting structured randomization

We can lower the number of operations needed by the randomized algorithm by generating B so that AB can be computed more rapidly

• there are different ways to generate B in this way, most look like

$$B = DFR$$

$$B = \underbrace{\begin{array}{c} & & \\ & \times \\ & & \\ &$$

- D is diagonal with elements randomly chosen from some space
- F can be applied to a vector in $O(n \log(n))$ operations
 - can be actual discrete Fourier transform
 - can also be real, for instance Hadamard transform $H_{2n} = \begin{vmatrix} H_n & H_n \\ H_n & -H_n \end{vmatrix}$
- *R* is $p \approx k$ columns of the $n \times n$ identity matrix
- we can then compute AB with $O(mn \log(n))$ operations (if m > n)
 - in fact O(mn log(k)) if a subsampled FFT algorithm is used

Cost of structured randomized factorization

Instead of matrix multiplication, we apply m FFTs of dimension n

- Q: if m > P, how much communication is required in BSP?
- A: each FFT is independent, so a transpose, O(mn/P)
- so we have the following total cost

$$O\left(\frac{mn\log(n)}{P} \cdot \gamma + \frac{mn}{P} \cdot \beta\right) + T_{QR}(m, k, k, P) = O\left(\frac{mn\log(n) + mk^2}{P} + \left[\frac{mn}{P} + \left(\frac{mk^2}{P}\right)^{2/3}\right] \cdot \beta + \left(\frac{Pk}{m}\right)^{2/3}\log(P) \cdot \alpha\right)$$

assuming m > n

- this is lower by a factor of $(n/k)^{2/3}$ with respect to the previous randomized version
- we should be able to lower communication cost by transposing A so that $m \le n$ (but we need $\max(m+n)k^2/P$ computation)

Short pause

Least squares

Given $A \in \mathbb{R}^{m \times n}$, $m \ge n$, would like to approximate

$$y = \underset{x}{\operatorname{argmin}} ||Ax - b||_2$$

by finding x within relative error ε , so that

$$||Ax - b||_2 - ||Ay - b||_2 \le \varepsilon ||Ay - b||_2$$

- QR-based methods require $O(mn^2)$ computation
- randomization yields costs

$$O(mn\log(n) + mn\log(1/\varepsilon) + n^3)$$

Rokhlin–Tygert (2008)

Again leverages subsampled Fourier-Transform (SRFT) or similar structured random matrix

- define SRFT $T \in \mathbb{R}^{l \times m}$ where $m \ge l \ge n$ (transpose of previous)
 - **(**) compute E = TA and E = QX, $X = R\Pi$ using column pivoting
 - **2** solve for v in $||Ev Tb||_2$ using E = QX
 - Solve for w in $||AX^{-1}w b||_2$ using iterative method with v as starting guess, to relative precision ε

• compute
$$x = X^{-1}w$$

- key idea: AX⁻¹ has low condition number w.h.p. so iterative method like CG or LSQR converges in O(log(1/ε)) iterations
- if so the number of operations per step is
 - **1** $O(mn \log(l)) + O(n^2 l)$
 - 2 cheap $O(m \log(l) + nl + n^2)$
 - O(mn log(1/ε))
 - cheap $O(n^2)$
- Tygert and Rokhlin theoretically need *I* > 4*n*² but observe that *I* = 4*n* gets condition number ≤ 3 in all tests

Analysis of randomized least squares algorithm

Lets consider the case of a very tall-and-skinny matrix, with $m \ge nP$

- the QR and triangular solves needed for preconditioning are then relatively cheap
- we need to consider the initial SRFT product and the matrix-vector products in the iterative method
- we can use a 1D row-blocked layout of A to make the communication cost of matrix-vector products in the iterative method small,
 O(n log(1/ε) · β + log(1/ε) · α)
- for the SRFT, if n > P, we can transpose and compute the FFT with cost

$$O(mn/P \cdot \beta + \alpha)$$

- otherwise, it makes sense to compute each FFT using all P processors at the same time
- Q: what would be the BSP communication cost then?
- A: $O(mn \log_{n/P}(n)/P \cdot \beta + \log_{n/P}(n) \cdot \alpha)$

Comparison between randomized methods

Recall the 1D QR row-recursive algorithm achieves the BSP complexity

$$O(n^2 \log(P) \cdot \beta + \log(P) \cdot \alpha)$$

- this is a bit more than the cost of SRFT when $m \approx nP$
- when m is very large the 1D algorithm may be faster than SRFT
- however, it may be possible to do SRFT faster by using the fact that the FFT is subsampled
- the SRFT may also have a relatively higher cache complexity
- a better characterization of the communication complexity of randomized least squares is an open question

Practical performance on least squares

Recent performance studies show that an algorithm based on the Tygert-Rokhlin technique can outperform LAPACK

- Avron, Maymoukov, and Toledo, "Blendenpick: supercharging LAPACK's least-squares solver", 2010
- tested dense high overdetermined $(m \gg n)$ systems
- uses LSQR for iterative solver, Hadamard transforms using FFTW
- LAPACK implementation may not have used the most cache-efficient QR in this case

Leverage scores

The SRFT can be seen as a row-mixing algorithm

- by taking linear combinations of rows, the projection is guaranteed to captures the range well
- in fact, its possible to just extract a sample of the rows
- however, an oblivious sampling technique is not robust, for instance when a matrix column is nonzero only for one row and we don't include this row in the sample
- sampling based on *leverage scores*: *l* ∈ ℝ^m provide guarantees of accuracy

$$U(i) = \sum_{i=1}^{k} U(i,k)^2$$

where $A = UDV^T$, so U are the singular vectors of A

Computing leverage scores

Obtaining leverage scores can be done by randomized projections

- can again leverage SRFT-like transforms
- see Magdon-Ismail, Mahoney, Woodruff "Fast approximation of matrix coherence and statistical leverage", 2012
- they compute all leverage scores in time $O(mn \log(n))$
- algorithm consists of the same building blocks, SRFT projection, QR/SVD on smaller matrix

Low-rank factorization for sparse matrices

If we want to obtain a low-rank approximate factorization for sparse \boldsymbol{A}

- QR with pivoting or SVD are expensive and complicated due to fill
- Krylov subspace methods can be used to construct a basis for $\{x, Ax, A^2x, \dots, A^kx\}$ and form a factorization
- randomized projections provide an attractive alternative
 - makes less sense to use SRFT than $n \times I$ Gaussian random matrix B
 - computation of AB can be done all at once, and so is more efficient in communication and synchronization than O(k) steps of iterative methods
 - if high accuracy guarantees are necessary, can use power iteration

 $(AA^T)^q AB$

in place if AB, improving accuracy exponentially with q