CS 598: Communication Cost Analysis of Algorithms
Lecture 23: Matrix and tensor completion (ALS, SGD, CCD)

Edgar Solomonik
University of lllinois at Urbana-Champaign

November 9, 2016

Matrix completion Regularized least squares

The matrix completion problem

Given a matrix A € R™*" and a set of observations Q C [1, m] x [1, n] find

2
argmin 37 (AG1.J) = X WL KHG.K)+ MW +]H]lF)
WERka,HER"Xk(iJ)GQ k

WHT is a low-rank model for A

regularization prevents overfit to observed data

this type of problem is typical in machine learning

e regularization can be of a different type
e data can be simply sparse rather than unobserved
e similar numerical methods used in many cases

Netflix prize: given m users and n films, build a recommender system

today we will mostly follow

e Yu, Hsieh, Si, Dhillon, “Parallel matrix factorization for recommender
systems”, 2013

Alternating least squares (ALS)

Repeat: fix W and solve for H then fix H and solve for W

@ each step improves approximation, convergence to a minimum
expected given satisfactory starting guess

@ we have a quadratic optimization problem

argmin Z (ZW NH(j, /) + A|[|W||e

mXxk
WeRmX (ij)eQ

@ the optimization problem is independent for rows of W
o Vi letting a; = A(/,:), wi = W(i,:),hi = H(i,:),Qi = {j : (i,)) € Q}

argmmZ(a(j —W,hT) + Allwill2

w;ERK

ALS: quadratic optimization

Seek minimizer for quadratic vector equation

f(w;) = Z (ai(j) - With>2 + AllwillF

JEQ;
o differentiating with respect to w; gives

8W =2 Z hT<WIhT ()> +2\w; =0

JEQ;

e rotating w;h! = h;w.| and defining H; = >_._o h! h; we get
' SV jeQ; 'yt

(Hi + Aw" =" hiai())

JEQ;

@ which is just a k x k dense symmetric linear system of equations

ALS: iteration cost

For updating each w;, ALS is dominated in cost by two steps
Q Hi=Ycq hihj
@ QR(H;+ Al) or another dense solver
These steps have the following costs
e the computation complexity is O(|Q;|k2) for (1) and O(k3) for (2)
e to update the full matrix W the total cost is O(|Q2|k? + mk3)
@ an interesting challenge is the parallelization of the total computation

Vi € R™, a,bc R* Hi(a,b) = Y _ hj(a)h;(b
JEQ;

@ when the full matrix is observed, so Q = [1, m] x [1, n], we have

Va,b e RX, H Zh

or simply H=HTH

Matrix completion Alternating least squares

Parallel ALS for dense matrices

Lets first consider parallelizing ALS when Q = [1, m] x [1, n]
@ this case is easier and is relevant for tensor factorizations
@ we need to compute H = HT H and then QR of A
@ the first matrix multiplication has complexity
O(nk?/P - + (nk?/P)?/3 . B + «)

@ to solve the linear systems in parallel, each processor can do the QR
factorization redundantly

O(k* v+ Kk*>-B+a)
@ the overall complexity is then
O(K*(k +n/P) -~y + (k* + (nk?/P)?/3) . B + «)

@ it is also possible to do the QR in parallel, which makes sense for
sufficiently large k

ALS for dense tensors

Given an order d tensor T with N = m? elements
@ we want to express T based on d matrices with dimensions m x k

@ generally, we will contract d — 1 matrices and optimize with respect
to one matrix W

@ the contracted tensor H is of dimension N/m x k

o forming H by the last matrix multiplication so long as m > 2k

o5 e (5)"sv0)

@ optimizing W via ALS costs the same as for dense matrices with
n=N/m

O(kz(k + N/(mP)) -~y + (k* + (Nk?/(Pm))?/3) - B + a>

Matrix completion Alternating least squares

Parallel ALS for matrix completion

The simplest parallelization approach is to replicate H on all processors

@ each processor updates m/P rows of W, by computing appropriate
H; to update each w;

@ each processor must also compute m/P QR factorizations of size
k x k

@ the communication cost is O(nk -) for updating W

@ the computation cost assuming load balance is

O((mk?/P + |QIk?/P) -)

Memory-limited parallel ALS

What if we do not have enough memory to store all of H on each
processor?

@ we are faced with a challenging communication pattern to parallelize
@ we could rotate rows of H along a ring of processors
@ each processor computes contributions to the #; it owns

e may need multiple ring passes if not enough memory to store m/P H,;
matrices

@ communication complexity is at least

O(nk-B+ P -)

Updating a single variable

Rather than solving optimization problems for rows w;, we can try to solve
for elements of w;, recall that we have

argmin Z (Ij)—ZW Jal)> + MWlF

mxk
WeRmMX ()GQ

o lets find the best z to replace W(i,t)
2
o argmin, ¥jcq, (A(.)) — 2H(, 1) = Xpse WO, DHGL 1))+ 222
@ the solution is
Sjeq, HU, €) (AGJ) = 10 WL DHG 1)
z= _
A + Zjefl,— H(./7 t)2

Matrix completion Coordinate descent

Coordinate descent
If (i,) € Q we define R(i,j) = A(i,j) — S35, W(i,[)H(j,) then

Sjeq, HU, €) (AG.J) = e WL DHG, 1)
A+ ZJ-EQI, H(j, t)?

ZzZ =

can be computed as

Y ieq, HU, t)(R(i,j) + W(i, t)H(j, t))
A+ ZJGQ,. H(j, t)?

ZzZ =

and R(i,j) can be updated as
R('?J) A R('?./) - (Z - W(l7 t))H(J7 t) v./ € Qi

both using O(|€2;|) operations

Cyclic coordinate descent (CCD)

The single-variable update in coordinate is cheap with respect to ALS

e updating all of w; costs O(|€2;|k) operations with coordinate descent
rather than O(|Q;|k? + k3) operations with ALS

@ by solving for all of w; at once, ALS obtains a more accurate solution
than coordinate descent

@ with coordinate descent there is also more flexibility in the update
ordering

@ cyclic coordinate descent (CCD) takes the same update ordering as
ALS, but with more fine-grained and less accurate updates

@ CCD++ is an alternative that updates a column of W then a column
of H, which correspond to an outer product (affects all entries in A),
before moving to a subsequent column

Parallel CCD++

Yu, Hsieh, Si, and Dhillon 2013 propose using a row-blocked layout of H
and W

@ they keep track of a corresponding block row and block column of A
and R on each processor (using twice the minimal amount of memory)

@ every column update in CCD++ is then fully parallelized, but an
allgather of each column is required to update R

@ the complexity of updating all of W and all of H is then

O(|Qk/P- v+ (m+nk- -5+ k-a)

NS
Short pause

Gradient-based update

Rather than solving for w; = W(i,:) exactly, improve it iteratively
@ improve by gradient descent with parameter n
o recall that we had

fw) = 3 (ai) — wit])+ Allwil e

JELQ;
and of (w)
wi T T .
I =2 Z h; (W,'hj — a;(])) + 2\w;
JEQ;

o we can use R(i,j) = a;(j) — hj w; to write this as

of (w;)
ow;

= =2 R(i,j)hj + 2\w;
JEQ;

@ a full gradient descent method would update w; = w; — nw

Stochastic gradient descent (SGD)

Stochastic gradient descent performs fine-grained updates based on
samples of the gradient

@ again the full gradient is
of (w;)

B = -2 Z R(i,j)h; + 2 w;
JERQ;

e for a given (i,j) SGD computes updates of the form
wi <= wi — n(Aw; /|4 — R(i,j)hy)
@ SGD randomly selects pairs (i,j) € Q and updates w; (and h; in a
dual fashion)
it then updates R(i,j) = A(i,j) — w/ h;
each update costs O(k) operations
O(|Q2]) yield the same total cost as CCD-based updates of W and H

Asynchronous SGD

Like other iterative methods, its attractive to execute SGD asynchronously

@ especially when the sequence is fully-randomized and executed on a
shared-memory threaded architecture

e this approach is examined in [Niu, Recht, Re, Wright 2011]

@ the asynchronicity can slow down convergence

Blocked SGD

[Gemulla, Haas, Nijkamp, Sismanis 2011] propose a distributed blocking
for SGD

@ each processor updates a set of independent blocks

@ loses true randomization of updates (which is usually used to prove
convergence)

@ can define P x P grid of blocks of dimension m/P x n/P

o diagonal blocks are independent as well as appropriate combinations
of subdiagonals and superdiagonals of blocks

e assuming ©(|Q2|/P?) updates are performed on each block (changing
every entry), the BSP complexity for |Q2| updates is

O(|IQk/P -~ + min(m,n)k - B+ P -)

	Matrix completion
	Regularized least squares
	Alternating least squares
	Coordinate descent
	Stochastic gradient descent

