
CS 598: Communication Cost Analysis of Algorithms
Lecture 23: Matrix and tensor completion (ALS, SGD, CCD)

Edgar Solomonik

University of Illinois at Urbana-Champaign

November 9, 2016

Matrix completion Regularized least squares

The matrix completion problem

Given a matrix A ∈ Rm×n and a set of observations Ω ⊆ [1,m]× [1, n] find

argmin
W∈Rm×k ,H∈Rn×k

∑
(i ,j)∈Ω

(
A(i , j)−

∑
k

W (i , k)H(j , k)
)2

+ λ(||W ||F + ||H||F)

WHT is a low-rank model for A

regularization prevents overfit to observed data

this type of problem is typical in machine learning

regularization can be of a different type
data can be simply sparse rather than unobserved
similar numerical methods used in many cases

Netflix prize: given m users and n films, build a recommender system

today we will mostly follow

Yu, Hsieh, Si, Dhillon, “Parallel matrix factorization for recommender
systems”, 2013

Matrix completion Alternating least squares

Alternating least squares (ALS)

Repeat: fix W and solve for H then fix H and solve for W

each step improves approximation, convergence to a minimum
expected given satisfactory starting guess

we have a quadratic optimization problem

argmin
W∈Rm×k

∑
(i ,j)∈Ω

(
A(i , j)−

∑
l

W (i , l)H(j , l)
)2

+ λ||W ||F

the optimization problem is independent for rows of W

∀i letting ai = A(i , :),wi = W (i , :), hi = H(i , :),Ωi = {j : (i , j) ∈ Ω}

argmin
wi∈Rk

∑
j∈Ωi

(
ai (j)− wih

T
j

)2
+ λ||wi ||2

Matrix completion Alternating least squares

ALS: quadratic optimization

Seek minimizer for quadratic vector equation

f (wi) =
∑
j∈Ωi

(
ai (j)− wih

T
j

)2
+ λ||wi ||F

differentiating with respect to wi gives

∂f (wi)

∂wi
= 2

∑
j∈Ωi

hT
j

(
wih

T
j − ai (j)

)
+ 2λwi = 0

rotating wih
T
j = hjw

T
i and defining Hi =

∑
j∈Ωi

hT
j hj we get

(Hi + λI)wT
i =

∑
j∈Ωi

hT
j ai (j)

which is just a k × k dense symmetric linear system of equations

Matrix completion Alternating least squares

ALS: iteration cost

For updating each wi , ALS is dominated in cost by two steps
1 Hi =

∑
j∈Ωi

hT
j hj

2 QR(Hi + λI) or another dense solver

These steps have the following costs

the computation complexity is O(|Ωi |k2) for (1) and O(k3) for (2)

to update the full matrix W the total cost is O(|Ω|k2 + mk3)

an interesting challenge is the parallelization of the total computation

∀i ∈ Rm, a, b ∈ Rk ,Hi (a, b) =
∑
j∈Ωi

hj(a)hj(b)

when the full matrix is observed, so Ω = [1,m]× [1, n], we have

∀a, b ∈ Rk ,H(a, b) =
n∑

j=1

hj(a)hj(b)

or simply H = HTH

Matrix completion Alternating least squares

Parallel ALS for dense matrices

Lets first consider parallelizing ALS when Ω = [1,m]× [1, n]

this case is easier and is relevant for tensor factorizations

we need to compute H = HTH and then QR of H
the first matrix multiplication has complexity

O(nk2/P · γ + (nk2/P)2/3 · β + α)

to solve the linear systems in parallel, each processor can do the QR
factorization redundantly

O(k3 · γ + k2 · β + α)

the overall complexity is then

O(k2(k + n/P) · γ + (k2 + (nk2/P)2/3) · β + α)

it is also possible to do the QR in parallel, which makes sense for
sufficiently large k

Matrix completion Alternating least squares

ALS for dense tensors

Given an order d tensor T with N = md elements

we want to express T based on d matrices with dimensions m × k

generally, we will contract d − 1 matrices and optimize with respect
to one matrix W

the contracted tensor H is of dimension N/m × k

forming H by the last matrix multiplication so long as m > 2k

O

(
Nk

P
· γ +

(Nk
P

)2/3
· β + α

)
optimizing W via ALS costs the same as for dense matrices with
n = N/m

O

(
k2(k + N/(mP)) · γ + (k2 + (Nk2/(Pm))2/3) · β + α

)

Matrix completion Alternating least squares

Parallel ALS for matrix completion

The simplest parallelization approach is to replicate H on all processors

each processor updates m/P rows of W , by computing appropriate
Hi to update each wi

each processor must also compute m/P QR factorizations of size
k × k

the communication cost is O(nk · β) for updating W

the computation cost assuming load balance is

O((mk2/P + |Ω|k2/P) · γ)

Matrix completion Alternating least squares

Memory-limited parallel ALS

What if we do not have enough memory to store all of H on each
processor?

we are faced with a challenging communication pattern to parallelize

we could rotate rows of H along a ring of processors

each processor computes contributions to the Hi it owns

may need multiple ring passes if not enough memory to store m/P Hi

matrices

communication complexity is at least

O(nk · β + P · α)

Matrix completion Coordinate descent

Updating a single variable

Rather than solving optimization problems for rows wi , we can try to solve
for elements of wi , recall that we have

argmin
W∈Rm×k

∑
(i ,j)∈Ω

(
A(i , j)−

∑
l

W (i , l)H(j , l)
)2

+ λ||W ||F

lets find the best z to replace W (i , t)

argminz

∑
j∈Ωi

(
A(i , j)− zH(j , t)−

∑
l 6=t W (i , l)H(j , l)

)2
+ λz2

the solution is

z =

∑
j∈Ωi

H(j , t)
(
A(i , j)−

∑
l 6=t W (i , l)H(j , l)

)
λ+

∑
j∈Ωi

H(j , t)2

Matrix completion Coordinate descent

Coordinate descent

If ∀(i , j) ∈ Ω we define R(i , j) = A(i , j)−
∑k

l=1 W (i , l)H(j , l) then

z =

∑
j∈Ωi

H(j , t)
(
A(i , j)−

∑
l 6=t W (i , l)H(j , l)

)
λ+

∑
j∈Ωi

H(j , t)2

can be computed as

z =

∑
j∈Ωi

H(j , t)
(
R(i , j) + W (i , t)H(j , t)

)
λ+

∑
j∈Ωi

H(j , t)2

and R(i , j) can be updated as

R(i , j)← R(i , j)− (z −W (i , t))H(j , t) ∀j ∈ Ωi

both using O(|Ωi |) operations

Matrix completion Coordinate descent

Cyclic coordinate descent (CCD)

The single-variable update in coordinate is cheap with respect to ALS

updating all of wi costs O(|Ωi |k) operations with coordinate descent
rather than O(|Ωi |k2 + k3) operations with ALS

by solving for all of wi at once, ALS obtains a more accurate solution
than coordinate descent

with coordinate descent there is also more flexibility in the update
ordering

cyclic coordinate descent (CCD) takes the same update ordering as
ALS, but with more fine-grained and less accurate updates

CCD++ is an alternative that updates a column of W then a column
of H, which correspond to an outer product (affects all entries in A),
before moving to a subsequent column

Matrix completion Coordinate descent

Parallel CCD++

Yu, Hsieh, Si, and Dhillon 2013 propose using a row-blocked layout of H
and W

they keep track of a corresponding block row and block column of A
and R on each processor (using twice the minimal amount of memory)

every column update in CCD++ is then fully parallelized, but an
allgather of each column is required to update R

the complexity of updating all of W and all of H is then

O(|Ω|k/P · γ + (m + n)k · β + k · α)

Short pause

Stochastic gradient descent

Gradient-based update

Rather than solving for wi = W (i , :) exactly, improve it iteratively

improve by gradient descent with parameter η

recall that we had

f (wi) =
∑
j∈Ωi

(
ai (j)− wih

T
j

)2
+ λ||wi ||F

and
∂f (wi)

∂wi
= 2

∑
j∈Ωi

hT
j

(
wih

T
j − ai (j)

)
+ 2λwi

we can use R(i , j) = ai (j)− hT
j wi to write this as

∂f (wi)

∂wi
= −2

∑
j∈Ωi

R(i , j)hj + 2λwi

a full gradient descent method would update wi = wi − η ∂f (wi)
∂wi

Stochastic gradient descent

Stochastic gradient descent (SGD)

Stochastic gradient descent performs fine-grained updates based on
samples of the gradient

again the full gradient is

∂f (wi)

∂wi
= −2

∑
j∈Ωi

R(i , j)hj + 2λwi

for a given (i , j) SGD computes updates of the form

wi ← wi − η(λwi/|Ωi | − R(i , j)hj)

SGD randomly selects pairs (i , j) ∈ Ω and updates wi (and hj in a
dual fashion)

it then updates R(i , j) = A(i , j)− wT
i hj

each update costs O(k) operations

O(|Ω|) yield the same total cost as CCD-based updates of W and H

Stochastic gradient descent

Asynchronous SGD

Like other iterative methods, its attractive to execute SGD asynchronously

especially when the sequence is fully-randomized and executed on a
shared-memory threaded architecture

this approach is examined in [Niu, Recht, Re, Wright 2011]

the asynchronicity can slow down convergence

Stochastic gradient descent

Blocked SGD

[Gemulla, Haas, Nijkamp, Sismanis 2011] propose a distributed blocking
for SGD

each processor updates a set of independent blocks

loses true randomization of updates (which is usually used to prove
convergence)

can define P × P grid of blocks of dimension m/P × n/P

diagonal blocks are independent as well as appropriate combinations
of subdiagonals and superdiagonals of blocks

assuming Θ(|Ω|/P2) updates are performed on each block (changing
every entry), the BSP complexity for |Ω| updates is

O(|Ω|k/P · γ + min(m, n)k · β + P · α)

	Matrix completion
	Regularized least squares
	Alternating least squares
	Coordinate descent
	Stochastic gradient descent

