CS 598: Communication Cost Analysis of Algorithms Lecture 24: Molecular dynamics

Edgar Solomonik

University of Illinois at Urbana-Champaign

November 14, 2016

Particle simulation

There are many types of N-body simulations

- generally they involve N interacting particles simulated over time
- molecular dynamics and cosmological simulations are particularly important
 - many types of methods exist for both
 - can be simulated directly by calculating all N^2 pairwise interactions
 - a key difference is the distribution of particles versus the distribution of planets and stars
- most numerical methods take advantage of the decay of the strength of interactions with distance
- first we consider direct interaction calculations, then methods that compute interactions within a cutoff distance

Molecular dynamics (MD) high-level schematic

A molecular dynamics simulation performs the following calculations at every *timestep*

- **(**) calculate non-bonded forces F(i, j) for each pair of particles p(i), p(j)
- (a) integrate non-bonded forces $f(i) = \sum_{j} F(i,j)$
- **③** consider local bonded many-particle interactions and update f(i)
- update acceleration a(i) = f(i)/m(i) and velocity v(i) using a(i)
- compute new particle position x(i) using v(i) and a(i)

Example force potential

In classical MD simulation, there two key types of non-bonded forces

- Van der Waals (dipole) interactions
 - refer to local particle interactions
 - are generally approximations to the electronic wavefunction
 - a popular simple formulation is the Lennart-Jones potential

$$F_{LJ}(i,j) = \frac{1}{x(i) - x(j)} \left(\frac{\sigma_{ij}^{(A)}}{|x(i) - x(j)|^{12}} - \frac{\sigma_{ij}^{(B)}}{|x(i) - x(j)|^6} \right)$$

where $\sigma_{ij}^{(A)}$ and $\sigma_{ij}^{(B)}$ depend on the type of particle p(i) and p(j) are • electrostatic interactions

- described by Coulomb's law for electric field due to charge
- decay slowly relative to Van Der Waals interactions

$$F_{\rm EC}(i,j) = (x(i) - x(j)) \frac{q(i)q(j)}{|x(i) - x(j)|^3}$$

where q(i) and q(j) are the charges of p(i) and p(j)

Example force integration

There are different schemes for updating x and v from the acceleration a

- time is discretized, so it can make sense to take into account values of velocity and acceleration v_{old} and a_{old} from the previous iteration
- different schemes can preserve various quantities and may have different error
- Velocity Verlet is particularly common because it preserves total energy and has second order global error in the time-step size s

1
$$v(i) = v_{old}(i) + \frac{1}{2}(a_{old}(i) + a(i))s$$

2 $x(i) = x_{old}(i) + v_{old}(i)s + \frac{1}{2}a(i)s^2$

Cache complexity of direct interactions

First, lets consider the memory-cache traffic of local MD calculation

- Q: provided we can fit Θ(H) particles into cache, how much useful computation can be done with this set?
- A: $\Theta(H^2)$, outputting $\Theta(H)$ partial force calculations
- its possible to compute all N^2 interaction pairs with only $O(N^2/H)$ cache complexity

Particle decomposition

The simplest was to parallelize MD is particle decomposition

- each processor is assigned N/P particles
- processors exchange particles in a ring communicator, computing forces from received processors to their own N/P
- Q: what communication complexity does this scheme have?
- A: $O(N \cdot \beta + P \cdot \alpha)$
- its possible to have fewer messages when more memory is available

Force decomposition

Particle decomposition corresponds to a row-wise blocking of F

- alternatively we can have each processor calculate an $N/\sqrt{P} \times N/\sqrt{P}$ block of the force matrix F
- each processor would require $2N/\sqrt{P}$ particles p(i) and p(j) for each F(i,j) it computes
- a reduction is necessary to compute $f(i) = \sum_{i} F(i,j)$
- total communication cost is $O(N/\sqrt{P} \cdot \beta + \alpha)$
- Q: what is the disadvantage of this method over particle decomposition?
- A: the memory usage is $\Theta(N/\sqrt{P})$ rather than $\Theta(N/P)$

Memory-constrained force decomposition

We can trade off memory-usage and communication cost

- classical MD is often performed on relatively small systems (N) on a large number of processors (P) so as to simulate a sufficiently long time-period, so pure force decomposition is actually often acceptable
- in general, we may have M = Θ(cN/P) memory per processor for some c ∈ [1, √P]
- can apply same reasoning as for cache complexity:
 - with $\Theta(M)$ particles in memory can do $\Theta(M^2)$ useful work
 - so, if each processor computes $N^2/(PM^2)$ different $M \times M$ blocks of F

$$T_{\mathsf{MF}}(N, P, M) = O\left(\frac{N^2}{P} \cdot \gamma + \frac{N^2}{PM} \cdot \beta + \frac{N^2}{PM^2} \cdot \alpha\right)$$
$$= O\left(\frac{N^2}{P} \cdot \gamma + \frac{N}{c} \cdot \beta + \frac{P}{c^2} \cdot \alpha\right)$$

Algorithms for direct force calculation

- 1D particle decomposition
- 2D force decomposition
- 1.5D memory-constrained force decomposition

Short pause

Cutoff radius

Few real applications actually calculate all particle interactions

- Van der Waals interactions decay very rapidly and can be ignored for far-away particles
- electrostatic forces can be computed by fast solvers
 - electrostatic potential obeys the Poisson equation
 - the gravitational potential (used for cosmological simulation) is also Poisson
- general structure of methods is as follows
 - compute Van der Waals interactions of all particles p(i), p(j) within distance $|x(i) x(j)| \le r_c$
 - construct a 3D charge density grid
 - solve the 3D Poisson equation on the grid via 3D FFT or Multigrid
 - interpolate potential to compute electrostatic forces

Parallel spatial decomposition

Let the domain be a $\mathit{N}^{1/3} imes \mathit{N}^{1/3} imes \mathit{N}^{1/3}$ box and assume uniform density

- molecular dynamics simulations are typically done inside 'solute' (water), and have uniform density
 - there are also *implicit methods*, which avoid working with water molecules explicitly, but they are less accurate and require more expensive interaction calculations
- cosmological simulations have highly non-uniform density
- if we assign each processor $\Theta(N/P)$ particles in a subdomain of dimensions $(N/P)^{1/3} \times (N/P)^{1/3} \times (N/P)^{1/3}$
 - to compute forces onto all these particles, need all particles within $r_{\rm c}$ away from subdomain
 - Q: how much communication does this require?
 - A: $O((r_c + (N/P)^{1/3})^3 N/P) = O(r_c^3 + r_c(N/P)^{2/3})$

An even better approach is to decompose the space of forces

- allow interactions between particles owned by two different processors to be computed on a third, in "neutral territory"
- David Shaw and Marc Snir came up with two important variants of these methods
- Shaw's approach attains the communication complexity $O(r_c^{3/2}(N/P)^{1/2} + r_c(N/P)^{2/3})$
- in the 2D case it uses the following decomposition

Diagrams taken from D. Shaw, "A Fast, Scalable Method for the Parallel Evaluation of Distance-Limited Pairwise Particle Interactions", 2005

In the NT method, each processor k is assigned a unique subvolume $X_k \times Y_k \times Z_k$ of dimensions $b_{xy} \times b_{xy} \times b_z$ such that $b_{xy}^2 b_z = N/P$

- it computes interactions of all particle p(i) and p(j) such that
 - p(i) and p(j) have a z-coordinate in Z_k and x, y-coordinates within r_c of some element in X_k, Y_k, respectively
 - p(i) and p(j) have x, y-coordinates in X_k , Y_k and a z-coordinate within r_c of some element in Z_k

• the volume of the region (the amount of communication) required is

$$W_{\rm NT}(r_c, b_{xy}, b_z) = O(r_c b_{xy}^2 + r_c b_z b_{xy} + r_c^2 b_z)$$

We need to minimize

$$W_{\rm NT}(r_c, b_{xy}, b_z) = O(r_c b_{xy}^2 + r_c b_z b_{xy} + r_c^2 b_z)$$

• subject to
$$b_{xy}^2 b_z = N/P$$

• note that $b_z = N/(Pb_{xy}^2)$ so

$$W_{\rm NT}(r_c, b_{xy}, N, P) = O\left(r_c b_{xy}^2 + \frac{r_c N}{P b_{xy}} + \frac{r_c^2 N}{P b_{xy}^2}\right)$$

• minimizing this quantity gives

$$\min_{b_{xy}}(W_{\mathsf{NT}}(r_c, b_{xy}, N, P)) = \begin{cases} r_c < (N/P)^{1/3} : O(r_c(N/P)^{2/3}) \\ r_c \ge (N/P)^{1/3} : O(r_c\sqrt{r_cN/P}) \end{cases}$$