CS 598: Communication Cost Analysis of Algorithms Lecture 25: Fast integral equation methods, hierarchically structured matrices

Edgar Solomonik

University of Illinois at Urbana-Champaign

November 16, 2016

Distance-limited interactions

Last lecture covered methods for direct particle interactions

- pairwise interactions among N particles with cut-off radius r_c
- \bullet uniform distribution in $\mathit{N}^{1/3} \times \mathit{N}^{1/3} \times \mathit{N}^{1/3}$ domain
- best algorithm attained communication cost

$$O\left(r_c\left(\frac{N}{P}\right)^{2/3}+r_c^{3/2}\sqrt{N/P}\right)$$

- the first term is r_c times the boundary of a box assigned to a processor and is dominant when r_c is small
- when *r_c* is big, a good approach would be to let each processor compute interactions between a unique pair of two boxes
- the total number of pairwise interactions is $\Theta(Nr_c^3)$, and given K particles there are $O(K^2)$ interactions to perform, so the two boxes would need to be of size $\Theta(\sqrt{Nr_c^3/P})$

Smooth Particle Mesh Ewald (SPME) method

Solve for long range interactions on a $m \times m \times m$ charge grid

- assume to be periodicity, which is reasonable for large systems
- Ewald summation is used to split the total potential energy

$$E = rac{1}{2} \sum_{c \in \mathbb{Z}^3} \sum_{i=1}^N \sum_{j=1}^N rac{q_i q_j}{|x(i) - x(j) + c N^{1/3}|}$$

into two parts (the form here is slightly simplified)

• the first part is a dampened direct summation

$$E_{\text{dir}} = \frac{1}{2} \sum_{c \in \mathbb{Z}^3} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{q_i q_j \text{erfc}(\beta | x(i) - x(j) + cN^{1/3}|)}{|x(i) - x(j) + cN^{1/3}|}$$

the function erfc(y) is the probability a uniform random variable with mean 0 and variance 1/2 falls outside of the range [-y, y], so pairs with sufficiently large x(i) - x(j) or in distant cells can be ignored
the second part is a convolution over the charge grid in all cells except

$$c = (0, 0, 0)$$
 contracted based on β

SPME computational structure

The forces on particles in SPME are obtained by equations that are derivatives of the energy with respect to position

- the computation of the reciprocal part is fairly simple
 - B-splines interpolate charge from nearby region of particles with cost

$$O(m^3/P \cdot \gamma + (N/P)^{2/3} \cdot \beta + \alpha)$$

- Q: the convolution on the $m \times m \times m$ charge grid is solved via 3D FFT, with what cost?
- A: when $P \leq m^{5/2}$

$$O(m^3 \log(m)/P \cdot \gamma + m^3/P \cdot \beta + \alpha)$$

• integrating potential from grid to compute forces on particles has cost

$$O(m^3/P\cdot\gamma+m^2/P^{2/3}\cdot\beta+\alpha)$$

• SPME performs very well when the charge density is uniform and periodic conditions are reasonable, it is also straight-forward to adjust it to handle bonded interactions

Solving 3D Poisson via multigrid

We can achieve an overall computation cost of O(N/P) for MD, when $m^3 \approx N$ by using multigrid

- grid construction and charge interpolation is different but possible
- multigrid V-cycle with grid $m_i \times m_i \times m_i$ has the following costs
 - O(1) smoothing iterations per level have cost

$$O(m_i^3/P\cdot\gamma+m_i^2/P^{2/3}\cdot\beta+\alpha)$$

- interpolation between grids and restriction asymptotically cost the same as smoothing
- Q: why? and does this still hold for smoothed algebraic multigrid?
- A: generally (nearly-)adjacent nodes in the mesh are combined, smoothing propagates information also only from adjacent nodes
- assuming $m_0 = m$ and $m_i = m_{i-1}/2$, need $O(\log(P))$ levels before subgrid can be solved by one processor, so overall cost is

$$O(m^3/P \cdot \gamma + m^2/P^{2/3} \cdot \beta + \log(P) \cdot \alpha)$$

• so SPME with FFT may be slightly more synchronization-efficient

Short pause

Barnes-Hut

If the particle distribution is nonuniform, a regular grid is unsuitable

- main alternative is tree-based decomposition
- subdivide space recursively until each cell contains O(k) particles
 - in 1D, obtain binary-tree
 - in 2D, obtain quad-tree
 - in 3D, obtain oct-tree
- compute a centered mass/charge for each tree node or *r* terms of a Taylor series for higher accuracy
- calculate forces between far-away particles in far-away cells, based on interaction with particle and a mass/charge at a higher-level tree node

Barnes-Hut

Diagram taken from course webpage of Mowry and Railing (CMU)

Hierarchical matrices

 ${\cal H}\text{-matrices}$ or HSS (hierarchically semi-separable matrices), introduced by Hackbusch, are an algebraic representation of a Barnes-Hut-like algorithm

- let $A \in N \times N$ encode the desired interactions
- given a binary tree partitioning, we split up

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

if the partitioning is balanced among particles A_{ii} are $n/2 \times n/2$

- Q: how would a quad tree partitioning look like?
- A: a quad tree partitioning would give

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix}$$

• in an *H*-matrix each *A_{ii}* is partitioned recursively and each off-diagonal block *A_{ij}* is rank *r*

Computation with \mathcal{H} -matrices

A step in Barnes-Hut simulation looks like a matrix-vector product with a \mathcal{H} -matrix, y = Ax

- consider the 1D case (binary tree), 2D and 3D are similar
- to update first partition of particles, we perform $y_1 = A_{11}x_1 + A_{12}x_2$
- thus for the particles in the second partition we can perform $U_1V_2^Tx_2$, where $A_{12} = U_1V_2^T$ and $U_1, V_2^T \in \mathbb{R}^{n \times r}$
- if we just have a single center of mass r = 1, the off-diagonal blocks are rank 1
- Q: how much computation is required for y = Ax if r is a constant and there are $O(\log(n))$ levels?
- A: $T(n) = 2T(n/2) + O(rn) = O(rn \log(n))$, this is also the amount of storage needed for A
- its also possible to define other operations including matrix-matrix multiplication and LU factorization with $\mathcal{H}\text{-matrices}$

Communication cost with $\ensuremath{\mathcal{H}}\xspace$ -matrices

Lets consider parallel \mathcal{H} -matrix-vector multiplication

- lets assume r is small
- Q: if we use a 1D blocking for U₁ and V₂, how much communication is required for U₁V₂^Tx₂?
- A: O(r)
- thus, given a proper blocking, the BSP complexity is

$$T(n, P, r) = T(n/2, P/2, r) + O(nr/P \cdot \gamma + r \cdot \beta + \alpha)$$

= $O(nr \log(n)/P \cdot \gamma + r \log(P) \cdot \beta + \log(P) \cdot \alpha)$

- construction of the *H*-matrix (oct-tree) costs somewhat more
- when partitions are not load balanced, processors should be partitioned accordingly, and height of tree may increase

Fast multipole method (FMM)

The FMM algorithm obtains linear complexity for integral equations

- there are many derivations of FMM for different types of equations
- the first, by Greengard and Rokhlin was for 2D electrostatics
- like in Barnes-Hut a tree of particles is defined, but in FMM we interact non-leaf nodes in the tree, so that every particle interacts with O(1) tree nodes
- for each tree node a multipole (inner) and Taylor (outer) expansion is defined consisting of $r = O(\log(1/\epsilon))$ terms for accuracy ϵ
 - thus, error is controlled explicitly by the size of the expansion
 - a multipole expansion is a special type of Taylor expansion
- *transformation* operators are defined to 'shift' multipole and Taylor expansions, and to convert between the two

FMM algorithm

The computation in FMM proceeds as follows

- perform interactions among local particles
- upward pass generate multipole expansion for every tree node starting from leaves
- Odwnward pass generate local expansion for every tree node starting from root

FMM as \mathcal{H}^2 -matrices

 $\mathcal{H}^2\text{-}\mathsf{matrices}$ provide an alternative closely-related way for solving integral equations with linear complexity

- \bullet $\mathcal{H}^2\text{-matrices}$ may be seen as a specialization of $\mathcal{H}\text{-matrices}$
- we represent each off-diagonal block at the /th level as

$$A_{ij}^{(I)} = W_i^{(I)} K_{ij}^{(I)} (V_j^{(I)})^{\mathsf{T}}$$

- if each $K_{ij}^{(l)} \in \mathbb{R}^{r \times r}$ this is just an \mathcal{H} -matrix
- what makes \mathcal{H}^2 -matrices special is a nested structure of the basis $W_i^{(l)}$ and $V_i^{(l)}$
- in particular transformation matrices $R_i^{(l)}$, $T_j^{(l)}$ define these with respect to the finer level l-1
- if branch factor is s and matrices are appropriately indexed then

$$W_{i}^{(l)} = \begin{bmatrix} W_{(i-1)s+1}^{(l-1)} \\ \vdots \\ W_{is}^{(l-1)} \end{bmatrix} R_{i}^{(l)}, \qquad V_{j}^{(l)} = \begin{bmatrix} V_{(j-1)s+1}^{(l-1)} \\ \vdots \\ V_{js}^{(l-1)} \end{bmatrix} T_{j}^{(l)}$$

Depiction of \mathcal{H}^2 -matrices

Depicted are $(V_{js}^{(l-1)})^{\mathsf{T}}$ and $(T_{j}^{(l)})^{\mathsf{T}}$ and not the other parts of the updates

Computation with \mathcal{H}^2 -matrices

Matrix-vector multiplication with a \mathcal{H}^2 -matrix can be dine in O(nr) operations

- requires forward transformation, multiplication, and backward transformation
- can compute $(V_j^{(l)})^T x_j^{(l)} = (T_j^{(l)})^T \sum_{k=1}^s (V_{(j-1)s+k}^{(l-1)})^T x_j^{(l-1)}$
- requires $O(r^2)$ work
- typically s=1 and $r=\log(1/\epsilon)$
- at leaves need to perform O(rn) work
- naive parallelization of tree would yield BSP complexity (assuming small r)

$$T(n, P, r) = O(nr/P \cdot \gamma + r \log(P) \cdot \beta + \log(P) \cdot \alpha)$$

• may be possible to shed log(P) factor