
CS 598: Communication Cost Analysis of Algorithms
Lecture 4: communication avoiding algorithms for LU factorization

Edgar Solomonik

University of Illinois at Urbana-Champaign

August 31, 2016

Review of Matrix Multiplication Review of Algorithms

Review of Matrix Multiplication Algorithms

SUMMA algorithm

2D partitioning, bandwidth cost O(n2/
√
P)

based on broadcast/reduce or allgather/scatter-reduce
3 variants: stationary C , stationary A, stationary B

Cannon’s algorithm

2D partitioning, bandwidth cost O(n2/
√
P)

based on point-to-point messages
also has 3 variants: stationary C , stationary A, stationary B
can be done in-place, but is difficult to implement for nonsquare
processor grids

3D algorithm

communicates all three matrices, achieves cost O(n2/P2/3)
uses a factor of P1/3 more memory
2.5D algorithm achieves O(n2/

√
cp) communication with a factor of c

more memory

Review of Matrix Multiplication Review of Algorithms

Rectangular Matrix Multiplication

[Demmel et al,
Communication-
optimal parallel
recursive rectangular
matrix multiplication,
2013]

For multiplication of m × k and k × n matrices the bandwidth cost is

W (m, n, k ,P) = O

(
min

p1p2p3=P

[
mk

p1p2
+

kn

p1p3
+

mn

p2p3

]
− mk + kn + mn

P

)

Review of Matrix Multiplication Review of Loomis-Whitney bound

Relevance of Loomis-Whitney inequality

Theorem (Loomis-Whitney (3D version), 1949)

Let V be a set of 3-tuples V ⊆ [1, n]3

|V | ≤
√
|π1(V)||π2(V)||π3(V)|

where

π1(V) = {(i2, i3) : ∃i1, (i1, i2, i3) ∈ V }
π2(V) = {(i1, i3) : ∃i2, (i1, i2, i3) ∈ V }
π3(V) = {(i1, i2) : ∃i3, (i1, i2, i3) ∈ V }

To minimize comm. in MM, minimize Π = π1(V) ∪ π2(V) ∪ π3(V)

|V | < |Π|3/2 ⇒ |Π| > |V |2/3

when |V | = n3/P, we see that |Π| > n2/P2/3

LU without pivoting Introduction to LU

LU factorization

The LU factorization algorithm provides a stable (when combined with
pivoting) replacement for computing the inverse of a n-by-n matrix A,

A = L · U

where L is lower-triangular and U is upper-triangular is computed via
Gaussian elimination: for k = 1 to n,

set L(k , k) = 1 and U(k , k : n] = A(k , k : n)

divide L(k+1 : n, k) = A(k+1 : n, k)/U(k , k)

update Schur complement

A(k+1 : n, k+1 : n) = A(k+1 : n, k+1 : n)−L(k+1 : n, k)·U(k , k+1 : n)

this algorithm can be blocked analogously to matrix multiplication

LU without pivoting 2D LU algorithm

Blocked LU factorization

LU without pivoting 2D LU algorithm

Blocked LU factorization

LU without pivoting 2D LU algorithm

Blocked LU factorization

LU without pivoting 2D LU algorithm

Blocked LU factorization

LU without pivoting 2D LU algorithm

Block-cyclic LU factorization

LU without pivoting 2D LU algorithm

Block-cyclic LU factorization

LU without pivoting 2D LU algorithm

Block-cyclic LU factorization

LU without pivoting 2D LU algorithm

Block-cyclic LU factorization

LU without pivoting 2D LU algorithm

Analysis of 2D LU algorithm

We are working on a
√
P ×
√
P processor grid, with block size b ≤ n/

√
P

The algorithm requires n/b steps, broadcasting the L and U factors of the
diagonal blocks is less expensive than the Schur complement update, so
we get the cost

T2D−LU(n, b,P) = (n/b)Tbcast(nb/
√
P,
√
P)

= O((n/b) log(P) · α + n2/
√
P · β)

To minimize latency, we would pick a maximal block size: b = n/
√
P.

Q: Then why do we bother with block-cyclic layouts for 2D LU?

A: The computation cost of factorizing the diagonal blocks is proportional
to (n/b) · b3 = nb2, for the triangular solves to (n/b) · nb/

√
P = n2b/

√
P,

which would raise the leading order cost unless b � n/
√
P

LU without pivoting Recursive LU algorithm

Recursive LU factorization (Tiskin, 2002)

LU factorization has the form[
A11 A12

A21 A22

]
=

[
L11 0
L21 L22

]
·
[
U11 U12

0 U22

]
and can be computed recursively via [L,U] = LU(A):

[L11,U11] = LU(A11)

L21 = A21 · U−1
11

U12 = L−1
11 · A12

[L22,U22] = LU(A22 − L21 · U12)

L =

[
L11 0
L21 L22

]
U =

[
U11 U12

0 U22

]
Q: But how to we obtain inversed matrices L−1

11 and U−1
11 ?

Note: Triangular inversion is much more stable than dense matrix
inversion but must be done with care (see Du Croz and Higham, 1992)

LU without pivoting Recursive LU algorithm

A: just compute them?

[
L11 0
L21 L22

]−1

=

[
L−1
11 0

−L−1
22 · L21 · L

−1
11 L−1

22

]

invert L11

invert L22

perform matrix multiplications to obtain L−1
22 · L21 · L

−1
11

Q: we had two recursive calls for LU, so is inversion as expensive?

A: no, because in inversion the recursive calls are independent!

Q: could we do better by building this algorithm into LU?

LU without pivoting Recursive LU algorithm

Recursive LU factorization

A: Yes! Generalize the problem [L,U, L−1,U−1] = LU(A):

[L11,U11, L
−1
11 ,U

−1
11] = LU(A11)

L21 = A21 · U−1
11

U12 = L−1
11 · A12

[L22,U22, L
−1
22 ,U

−1
22] = LU(A22 − L21 · U12)

L =

[
L11 0
L21 L22

]
U =

[
U11 U12

0 U22

]
L−1 =

[
L−1
11 0

−L−1
22 · L21 · L

−1
11 L−1

22

]
U−1 =

[
U−1
11 −U−1

11 · U12 · U−1
22

0 U−1
22

]

LU without pivoting Recursive LU algorithm

Try it yourself!

Our LU algorithm makes two recursive calls to LU with n/2 and P
processors, and performs 7 matrix multiplications at each recursive level
with matrix dimension n/2 and P processors

What bandwidth and synchronization costs can it achieve?

Cost analysis of LU factorization

Recursive LU factorization: analysis

The two recursive calls within LU factorization must be done in sequence,
so we perform them with all the processors. We have to also pay for the
cost of matrix multiplications at each level

TLU(n,P) = 2TLU(n/2,P) + O(TMM(n,P))

= 2TLU(n/2,P) + O

(
log(P) · α +

n2

P2/3
· β
)

with base-case cost (sequential execution)

TLU(n0,P) = O(log(P) · α + n20 · β)

the bandwidth cost decreases geometrically at each level, the base cases
can be done sequentially with n0 = n/P2/3, giving a total cost of

TLU(n,P) = O(P2/3 · log(P) · α) + O

(
n2

P2/3
· β
)

Cost analysis of LU factorization

Recursive triangular inversion: analysis

The two recursive calls within triangular inversion are independent, so we can
perform them simultaneously with half of the processors

TTri−Inv(n,P) = 2TTri−Inv(n/2,P/2) + O(TMM(n,P))

= TTri−Inv(n/2,P/2) + O

(
log(P) · α +

n2

P2/3
· β
)

with base-case cost (sequential execution)

TTri−Inv(n0,P) = O(log(P) · α) + O(n20 · β)

the bandwidth cost goes down at each level and we can execute the base-case
sequentially when n0 = n/P2/3, with a total cost of

TTri−Inv(n,P) = O(log(P)2 · α) + O

(
n2

P2/3
· β
)

So triangular inversion has logarithmic depth while LU has polynomial depth, but
using inversion within LU naively would raise the LU latency by another log factor

Administrative Interlude

Short pause

Administrative Interlude

Course projects

the choice of project will be flexible

doing something in your current research area is encouraged

first proposal deadline pushed back a week to Sep 28

setting up a meeting with me prior to first proposal is recommended

especially if you are not sure what you want to do
can give you feedback on your ideas (gauge difficulty) or suggest others
send an email or just show up at office hours

	Review of Matrix Multiplication
	Review of Algorithms
	Review of Loomis-Whitney bound

	LU without pivoting
	Introduction to LU
	2D LU algorithm
	Recursive LU algorithm

	Cost analysis of LU factorization
	Administrative Interlude

